[1] LI, J. Q., FAN, X. L., and LI, F. M. Numerical and experimental study of a sandwich-like metamaterial plate for vibration suppression. Composite Structures, 238, 111969(2020) [2] ZHU, J., CHRISTENSEN, J., JUNG, J., MARTIN-MORENO, L., YIN, X., FOK, L., ZHANG, X., and GARCIA-VIDAL, F. J. A holey-structured metamaterial for acoustic deep-subwavelength imaging. Nature Physics, 7(1), 52-55(2011) [3] LAI, Y., WU, Y., SHENG, P., and ZHANG, Z. Q. Hybrid elastic solids. Nature Materials, 10, 620-624(2011) [4] MEI, J., MA, G. C., YANG, M., YANG, Z. Y., WEN, W. J., and SHENG, P. Dark acoustic metamaterials as super absorbers for low-frequency sound. Nature Communications, 3, 756(2012) [5] WEN, X. X., WEN, J. H., YU, D. L., WANG, G., LIU, Y. Z., and HAN, X. Y. Phononic Crystals, National Defense Industry Press, Beijing (2009) [6] LIU, Z. Y., ZHANG, X. X., MAO, Y. W., ZHU, Y. Y., YANG, Z. Y., CHAN, C. T., and SHENG, P. Locally resonant sonic materials. Physica B:Condensed Matter, 338, 201-205(2000) [7] LV, H. Y. and ZHANG, Y. M. A wave-based vibration analysis of a finite Timoshenko locally resonant beam suspended with periodic uncoupled force-moment type resonators. Crystals, 10, 1132(2020) [8] CAI, C. X., WANG, Z. H., CHU, Y. Y., LIU, G. S., and XU, Z. The phononic band gaps of Bragg scattering and locally resonant pentamode metamaterials. Journal of Physics D:Applied Physics, 50, 415105(2017) [9] NING, L., WANG, Y. Z., and WANG, Y. S. Active control of elastic metamaterials consisting of symmetric double Helmholtz resonator cavities. International Journal of Mechanical Sciences, 10, 1016(2019) [10] HIRSEKORN, M. Small-size sonic crystals with strong attenuation bands in the audible frequency range. Applied Physics Letters, 84, 3364-3366(2004) [11] WANG, G. Research on the Mechanism and the Vibration Attenuation Characteristic of Locally Resonant Band Gap in Phononic Crystals, Ph.D. dissertation, National Defense University of Science and Technology, Changsha (2005) [12] PENNEC, Y., ROUHANI, B. D., LARABI, H., AKJOUJ, A., GILLET, J. N., VASSEUR, J. O., and THABET, G. Phonon transport and waveguiding in a phononic crystal made up of cylindrical dots on a thin homogeneous plate. Physical Review B, 80, 144302(2009) [13] YU, D. Research on the Vibration Band Gaps of Periodic Beams and Plates Based on the Theory of Phononic Crystals, Ph.D. dissertation, National Defense University of Science and Technology, Changsha (2006) [14] WANG, Y. F. and WANG, Y. S. Complete bandgaps in two-dimensional phononic crystal slabs with resonators. Journal of Applied Physics, 114, 43509(2013) [15] ERRICO, F., TUFANO, G., ROBIN, O., GUENFOUD, N., and ATALLA, N. Simulating the sound transmission loss of complex curved panels with attached noise control materials using periodic cell wavemodes. Applied Acoustics, 156, 21-28(2019) [16] OUDICH, M., LI, Y., ASSOUAR, B. M., and HOU, Z. A sonic band gap based on the locally resonant phononic plates with stubs. New Journal of Physics, 12, 083049(2010) [17] MA, F. Y., XU, Y. C., and WU, J. H. Modal displacement method for extracting the bending wave bandgap of plate-type acoustic metamaterials. Applied Physics Express, 12, 074004(2019) [18] MI, Y. Z., YANG, H. S., LEI, B., and ZHENG, H. A variational method for band-gap analysis of metamaterial plates with local resonators. Acta Acustica, 45, 404-414(2020) [19] HUANG, T. Y., SHEN, C., and JING, Y. Membrane- and plate-type acoustic metamaterials. The Journal of the Acoustical Society of America, 139, 3240-3250(2016) [20] ZHU, X. X., XIAO, Y., WEN, J. H., and YU, D. L. Flexural wave band gaps and vibration reduction properties of a locally resonant stiffened plate. Acta Physica Sinica, 17, 176202(2016) [21] OUDICH, M., SENESI, M., ASSOUAR, M. B., RUZENNE, M., SUN, J. H., VINCENT, B., HOU, Z., and WU, T. T. Experimental evidence of locally resonant sonic band gap in two-dimensional phononic stubbed plates. Physical Review B, 84, 165136(2011) [22] XIAO, Y. Locally Resonant Structures:Band Gap Tuning and Properties of Vibration and Noise Reduction, Ph.D. dissertation, National Defense University of Science and Technology, Changsha (2012) [23] LU, Z. Q., SHAO, D., FANG, Z. W., DING, H., and CHEN, L. Q. Integrated vibration isolation and energy harvesting via a bi-stable piezo-composite plate. Journal of Vibration and Control, 26, 779-789(2020) [24] LU, Z. Q., WU, D., DING, H., and CHEN, L. Q. Vibration isolation and energy harvesting integrated in a Stewart platform with high static and low dynamic stiffness. Applied Mathematical Modelling, 89, 249-267(2021) [25] SONG, Y., FENG, L., WEN, J., YU, D., and WEN, X. Reduction of the sound transmission of a periodic sandwich-like plate using the stop band concept. Composite Structures, 128, 428-436(2015) [26] LU, Z. Q., ZHAO, L., DING, H., and CHEN, L. Q. A dual-functional metamaterial for integrated vibration isolation and energy harvesting. Journal of Sound and Vibration, 509, 116251(2021) [27] LIU, Z. B., RUMPLER, R., and FENG, L. P. Broadband locally resonant metamaterial sandwichlike plate for improved noise insulation in the coincidence region. Composite Structures, 200, 165-172(2018) [28] HE, Z. C., XIAO, X., and LI, E. Design for structural vibration suppression in laminate acoustic metamaterials. Composites Part B:Engineering, 131, 237-252(2017) [29] QIN, Q., SHENG, M. P., and GUO, Z. W. Low-frequency vibration and radiation performance of a locally resonant plate attached with periodic multiple resonators. Applied Sciences, 10, 2843(2020) |