[1] COBB, R. G., SULLIVAN, J. M., DAS, A., DAVIS, L. P., HYDE, T. T., DAVIS, T., RAHMAN, Z. H., and SPANOS, J. T. Vibration isolation and suppression system for precision payloads in space. Smart Materials and Structures, 8(6), 798-812 (1999) [2] ZHOU, W. Y. and LI, D. X. Design and analysis of an intelligent vibration isolation platform for reaction/momentum wheel assemblies. Journal of Sound and Vibration, 331(13), 2984-3005 (2012) [3] ZHANG, Y., ZANG, Y., LI, M., WANG, Y. Y., and LI, W. B. Active-passive integrated vibration control for control moment gyros and its application to satellites. Journal of Sound and Vibration, 394, 1-14 (2017) [4] STEWART, D. A platform with six degrees of freedom. Proceedings of the Institution of Mechanical Engineers, 180(1), 371-386 (1965) [5] FURQAN, M., SUHAIB, M., and AHMAD, N. Studies on Stewart platform manipulator: a review. Journal of Mechanical Science and Technology, 31(9), 4459-4470 (2017) [6] FICHTER, E. F. A Stewart platform-based manipulator: general theory and practical construction. The International Journal of Robotics Research, 5(2), 157-182 (1986) [7] BONEV, I. A. and RYU, J. A new method for solving the direct kinematics of general 6-6 Stewart platforms using three linear extra sensors. Mechanism and Machine Theory, 35(3), 423-436 (2000) [8] LEBRET, G., LIU, K., and LEWIS, F. L. Dynamic analysis and control of a Stewart platform manipulator. Journal of Robotic Systems, 10(5), 629-655 (1993) [9] XU, P. and WANG, D. Vibration damping modeling of Stewart platform through Newton-Euler approach. Proceedings of Smart Structures and Materials} 2005: Smart Structures and Integrated Systems, 5764, 650-661 (2005) [10] WU, Y., YU, K. P., JIAO, J., CAO, D. Q., CHI, W. C., and TANG, J. Dynamic isotropy design and analysis of a six-DOF active micro-vibration isolation manipulator on satellites. Robotics and Computer-Integrated Manufacturing, 49, 408-425 (2018) [11] GÁSPÁR, P., SZÁSZI, I., and BOKOR, J. Robust control design for mechanical systems using the mixed μ synthesis. Periodica Polytechnica Transportation Engineering, 30(1-2), 37-52 (2002) [12] ZHANG, X., SHAO, C., LI, S., XU, D., and ERDMAN, A. G. Robust H∞ vibration control for flexible linkage mechanism systems with piezoelectric sensors and actuators. Journal of Sound and Vibration, 243(1), 145-155 (2001) [13] HAN, J. Q. From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 56(3), 900-906 (2009) [14] ZEINOUN, I. J. and KHORRAMI, F. An adaptive control scheme based on fuzzy logic and its application to smart structures. Smart Materials and Structures, 3(3), 266-276 (1994) [15] GHABOUSSI, J. and JOGHATAIE, A. Active control of structures using neural networks. Journal of Engineering Mechanics, 121(4), 555-567 (1995) [16] CURTIS, A. R. An application of genetic algorithms to active vibration control. Journal of Intelligent Material Systems and Structures, 2(4), 472-481 (1991) [17] GAO, Z. Q. Scaling and bandwidth-parameterization based controller tuning. Proceedings of Proceedings of the American Control Conference, 6, 4989-4996 (2006) |