[1] GODUNOV, S. K. A finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics. Sbornik:Mathematics, 47, 357-393(1959) [2] HARTEN, A., LAX, P., and LEER, B. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Review, 25, 35-61(1983) [3] LIOU, M. S. Mass flux schemes and connection to shock instability. Journal of Computational Physics, 160, 623-648(2000) [4] TORO, E. F., SPRUCE, M., and SPEARES, W. Restoration of the contact surface in the HLL-Riemann solver. Shock Waves, 4, 25-34(1994) [5] QUIRK, J. J. A contribution to the great Riemann solver debate. Upwind and High-Resolution Schemes, Springer, Berlin, 550-569(1997) [6] PANDOLFI, M. and D'AMBROSIO, D. Numerical instabilities in upwind methods:analysis and cures for the "carbuncle" phenomenon. Journal of Computational Physics, 166, 271-301(2001) [7] XU, K. and LI, Z. Dissipative mechanism in Godunov-type schemes. International Journal for Numerical Methods in Fluids, 37, 1-22(2001) [8] SIMON, S. and MANDAL, J. C. A cure for numerical shock instability in HLLC Riemann solver using antidiffusion control. Computers & Fluids, 174, 144-166(2018) [9] SIMON, S. and MANDAL, J. C. A simple cure for numerical shock instability in HLLC Riemann solver. Journal of Computational Physics, 378, 477-496(2019) [10] SHEN, Z., YAN, W., and YUAN, G. A robust HLLC-type Riemann solver for strong shock. Journal of Computational Physics, 309, 185-206(2016) [11] HUANG, K., WU, H., YU, H., and YAN, D. Cures for numerical shock instability in HLLC solver. International Journal for Numerical Methods in Fluids, 65, 1026-1038(2011) [12] KIM, S. D., LEE, B. J., LEE, H. J., and JEUNG, I. S. Robust HLLC Riemann solver with weighted average flux scheme for strong shock. Journal of Computational Physics, 228, 7634-7642(2009) [13] REN, Y. X. A robust shock-capturing scheme based on rotated Riemann solvers. Computers & Fluids, 32, 1379-1403(2003) [14] DUMBSER, M., MOSCHETTA, J. M., and GRESSIER, J. A matrix stability analysis of the carbuncle phenomenon. Journal of Computational Physics, 197, 647-670(2004) [15] CHEN, S. S., YAN, C., LIN, B. X., and LI, Y. S. A new robust carbuncle-free Roe scheme for strong shock. Journal of Scientific Computing, 77, 1250-1277(2018) [16] KIM, S. S., KIM, C., RHO, O. H., and HONG, K. S. Cures for the shock instability:development of a shock-stable Roe scheme. Journal of Computational Physics, 185, 342-374(2003) [17] CHEN, S. S., LIN, B. X., LI, Y. S., and YAN, C. HLLC+:low-Mach shock-stable HLLC-type Riemann solver for all-speed flows. SIAM Journal on Scientific Computing, 42, B921-B950(2020) [18] SIMON, S. and MANDAL, J. C. Strategies to cure numerical shock instability in the HLLEM Riemann solver. International Journal for Numerical Methods in Fluids, 89, 533-569(2019) [19] GOTTLIEB, S. and SHU, C. W. Total variation diminishing Runge-Kutta schemes. Mathematics of Computation, 67, 73-85(1998) [20] LUO, H., BAUM, J. D., and LÖHNER, R. An accurate, fast, matrix-free implicit method for computing unsteady flows on unstructured grids. Computers & Fluids, 30, 137-159(2001) [21] DAVIS, S. Simplified second-order Godunov-type methods. SIAM Journal on Scientific and Statistical Computing, 9, 445-473(1988) [22] EINFELDT, B. On Godunov-type methods for gas dynamics. SIAM Journal on Numerical Analysis, 25(2), 294-318(1988) [23] BATTEN, P., CLARKE, N., LAMBERT, C., and CAUSON, D. On the choice of wavespeeds for the HLLC Riemann solver. SIAM Journal on Scientific Computing, 18, 1553-1570(1997) [24] LIU, L., LI, X., and SHEN, Z. Overcoming shock instability of the HLLE-type Riemann solvers. Journal of Computational Physics, 418, 109628(2020) [25] PEERY, K. M. and IMLAY, S. T. Blunt-body flow simulations. 24th Joint Propulsion Conference, American Institute of Aeronautics and Astronautics, Massachusetts (1988) [26] WOODWARD, P. and COLELLA, P. The numerical simulation of two-dimensional fluid flow with strong shocks. Journal of Computational Physics, 54, 115-173(1984) [27] SHEN, Z., YAN, W., and YUAN, G. A stability analysis of hybrid schemes to cure shock instability. Communications in Computational Physics, 15, 1320-1342(2015) [28] VEVEK, U. S., ZANG, B., and NEW, T. H. On alternative setups of the double Mach reflection problem. Journal of Scientific Computing, 78, 1291-1303(2019) [29] EMERY, A. F. An evaluation of several differencing methods for inviscid fluid flow problems. Journal of Computational Physics, 2, 306-331(1968) |