Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (7): 1225-1242.doi: https://doi.org/10.1007/s10483-024-3161-6
• Articles • Previous Articles Next Articles
Zhou HU1, Zhibo WEI2, Yan CHEN2,3, Rui ZHU1,*()
Received:
2024-04-17
Online:
2024-07-03
Published:
2024-06-29
Contact:
Rui ZHU
E-mail:ruizhu@bit.edu.cn
Supported by:
2010 MSC Number:
Zhou HU, Zhibo WEI, Yan CHEN, Rui ZHU. Reconfigurable mechanism-based metamaterials for ternary-coded elastic wave polarizers and programmable refraction control. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1225-1242.
Fig. 3
(a) EFCs of in-plane wave modes and (b) polarization characteristics of the null-mode metamaterial at 10 kHz, where aluminum (ρ0=2 700 kg/m3 and E0=70 GPa) is chosen as the constituent medium. Short black solid lines at a certain interval of θk represent the polarization vectors (color online)"
Fig. 4
(a) EFCs of in-plane wave modes and (b) polarization characteristics of the uni-mode metamaterial at 10 kHz, where aluminum (ρ0=2 700 kg/m3 and E0=70 GPa) is chosen as the constituent medium. Short black solid lines at a certain interval of θk represent polarization vectors (color online)"
Fig. 5
(a) EFC of the in-plane wave modes and (b) polarization characteristics of the bi-mode metamaterial at 10 kHz, where aluminum (ρ0=2 700 kg/m3 and E0=70 GPa) is chosen as the constituent medium. Short black solid lines at a certain interval of θk represent polarization vectors (color online)"
Fig. 10
(a) EFC analysis of positive-negative bi-refraction in the uni-mode metamaterial by rotating 45° counterclockwise. (b) Waveform (left) and the -3 dB frequency spectrum (right) of the tone burst signal. (c) Simulation results with the homogenized model of the uni-mode metamaterials. Pi and θi represent the energy flow orientation and the incident angle of the incident L wave, respectively. PR and NR represent positive and negative refractions, respectively (color online)"
Fig. 13
Numerical validation of programmable refractions with real mechanism-based metamaterials. (a) Positive-negative bi-refraction in the uni-mode metamaterial by rotating 45° counterclockwise. (b) only-negative refraction and (c) only-positive refraction in the bi-mode metamaterial by rotating 45° counterclockwise and clockwise, respectively (color online)"
1 | AULD, B. A. Acoustic Fields and Waves in Solids, Vol. 1, Wiley, New York (1973) |
2 | COLOMBI, A., COLQUITT, D., ROUX, P., GUENNEAU, S., and CRASTER, R. V. A seismic metamaterial: the resonant metawedge. Scientific Reports, 6 (1), 27717 (2016) |
3 | COLQUITT, D. J., COLOMBI, A., CRASTER, R. V., ROUX, P., and GUENNEAU, S. R. L. Seismic metasurfaces: sub-wavelength resonators and Rayleigh wave interaction. Journal of the Mechanics and Physics of Solids, 99, 379- 393 (2017) |
4 | PREDOI, M. V., CASTAINGS, M., HOSTEN, B., and BACON, C. Wave propagation along transversely periodic structures. The Journal of the Acoustical Society of America, 121 (4), 1935- 1944 (2007) |
5 | SONG, F., HUANG, G. L., and HUDSON, K. Guided wave propagation in honeycomb sandwich structures using a piezoelectric actuator/sensor system. Smart Materials and Structures, 18 (12), 125007 (2009) |
6 | MITRA, M., and GOPALAKRISHNAN, S. Guided wave based structural health monitoring: a review. Smart Materials and Structures, 25 (5), 053001 (2016) |
7 | WHITE, P. J., CLEMENT, G. T., and HYNYNEN, K. Longitudinal and shear mode ultrasound propagation in human skull bone. Ultrasound in Medicine and Biology, 32 (7), 1085- 1096 (2006) |
8 | LI, G. Y., ZHENG, Y., JIANG, Y. X., ZHANG, Z., and CAO, Y. Guided wave elastography of layered soft tissues. Acta Biomaterialia, 84, 293- 304 (2019) |
9 | LIU, Z., CHAN, C. T., and SHENG, P. Analytic model of phononic crystals with local resonances. Physical Review B, 71, 014103 (2005) |
10 | YAO, S., ZHOU, X., and HU, G. Experimental study on negative effective mass in a 1D mass-spring system. New Journal of Physics, 10 (4), 043020 (2008) |
11 | HUANG, H. H., and SUN, C. T. Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density. New Journal of Physics, 11 (1), 013003 (2009) |
12 | FANG, N., XI, D., XU, J., AMBATI, M., SRITURAVANICH, W., SUN, C., and ZHANG, X. Ultrasonic metamaterials with negative modulus. Nature Materials, 5 (6), 452- 456 (2006) |
13 | ZHOU, X., and HU, G. Analytic model of elastic metamaterials with local resonances. Physical Review B, 79, 195109 (2009) |
14 | LAI, Y., WU, Y., SHENG, P., and ZHANG, Z. Q. Hybrid elastic solids. Nature Materials, 10 (8), 620- 624 (2011) |
15 | MA, G., FU, C., WANG, G., DEL HOUGNE, P., CHRISTENSEN, J., LAI, Y., and SHENG, P. Polarization bandgaps and fluid-like elasticity in fully solid elastic metamaterials. Nature Communications, 7, 13536 (2016) |
16 | WANG, Z., ZHANG, Q., ZHANG, K., and HU, G. Tunable digital metamaterial for broadband vibration isolation at low frequency. Advanced Materials, 28 (44), 9857- 9861 (2016) |
17 | LIU, H., ZHANG, Q., ZHANG, K., HU, G., and DUAN, H. Designing 3D digital metamaterial for elastic waves: from elastic wave polarizer to vibration control. Advanced Science, 6 (16), 1900401 (2019) |
18 | WU, Y., LAI, Y., and ZHANG, Z. Q. Elastic metamaterials with simultaneously negative effective shear modulus and mass density. Physical Review Letters, 107 (10), 105506 (2011) |
19 | SANG, S., SANDGREN, E., and WANG, Z. Wave attenuation and negative refraction of elastic waves in a single-phase elastic metamaterial. Acta Mechanica, 229 (6), 2561- 2569 (2018) |
20 | MARIGO, J. J., MAUREL, A., and PHAM, K. Negative refraction in a single-phase flexural metamaterial with hyperbolic dispersion. Journal of the Mechanics and Physics of Solids, 170, 105126 (2023) |
21 | ZHU, R., LIU, X. N., HU, G. K., SUN, C. T., and HUANG, G. L. Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial. Nature Communications, 5, 5510 (2014) |
22 | ZHU, R., CHEN, Y. Y., WANG, Y. S., HU, G. K., and HUANG, G. L. A single-phase elastic hyperbolic metamaterial with anisotropic mass density. The Journal of the Acoustical Society of America, 139 (6), 303- 310 (2016) |
23 | LEE, H., OH, J. H., SEUNG, H. M., CHO, S. H., and KIM, Y. Y. Extreme stiffness hyperbolic elastic metamaterial for total transmission subwavelength imaging. Scientific Reports, 6, 24026 (2016) |
24 | ZHU, R., YASUDA, H., HUANG, G. L., and YANG, J. K. Kirigami-based elastic metamaterials with anisotropic mass density for subwavelength flexural wave control. Scientific Reports, 8, 483 (2018) |
25 | DONG, H. W., ZHAO, S. D., WANG, Y. S., and ZHANG, C. Broadband single-phase hyperbolic elastic metamaterials for super-resolution imaging. Scientific Reports, 8, 2247 (2018) |
26 | KWEUN, J. M., LEE, H. J., OH, J. H., SEUNG, H. M., and KIM, Y. Y. Transmodal Fabry-Perot resonance: theory and realization with elastic metamaterials. Physical Review Letters, 118 (20), 205901 (2017) |
27 | YANG, X., and KIM, Y. Y. Asymptotic theory of bimodal quarter-wave impedance matching for full mode-converting transmission. Physical Review B, 98 (14), 144110 (2018) |
28 | YANG, X., and KIM, Y. Y. Topology optimization for the design of perfect mode-converting anisotropic elastic metamaterials. Composite Structures, 201, 161- 177 (2018) |
29 | YANG, X., KWEUN, J. M., and KIM, Y. Y. Theory for perfect transmodal Fabry-Perot interferometer. Scientific Reports, 8, 69 (2018) |
30 | YANG, X. W., KWEUN, M., and KIM, Y. Y. Monolayer metamaterial for full mode-converting transmission of elastic waves. Applied Physics Letters, 115 (7), 071901 (2019) |
31 | LEE, J., KWEUN, M., LEE, W., PARK, C. I., and KIM, Y. Y. Perfect transmission of elastic waves obliquely incident at solid-solid interfaces. Extreme Mechanics Letters, 51, 101606 (2022) |
32 | LEE, J., PARK, J., PARK, C. W., CHO, S. H., and KIM, Y. Y. Uni-modal retroreflection in multi-modal elastic wave fields. International Journal of Mechanical Sciences, 232, 107655 (2022) |
33 | AHN, Y. K., LEE, H. J., and KIM, Y. Y. Conical refraction of elastic waves by anisotropic metamaterials and application for parallel translation of elastic waves. Scientific Reports, 7 (1), 10072 (2017) |
34 | LEE, H. J., LEE, J. R., MOON, S. H., JE, T. J., JEON, E. C., KIM, K., and KIM, Y. Y. Off-centered double-slit metamaterial for elastic wave polarization anomaly. Scientific Reports, 7 (1), 15378 (2017) |
35 | AHN, B., LEE, H. J., and KIM, Y. Y. Topology optimization of anisotropic metamaterials tracing the target EFC and field polarization. Computer Methods in Applied Mechanics and Engineering, 333, 176- 196 (2018) |
36 | PATIL, G. U., SHEDGE, A. B., and MATLACK, K. H. 3D auxetic lattice materials for anomalous elastic wave polarization. Applied Physics Letters, 115, 091902 (2019) |
37 | ZADPOOR, A. A. Mechanical meta-materials. Materials Horizons, 3 (5), 371- 381 (2016) |
38 | LI, Z., LUO, Z., ZHANG, L. C., and WANG, C. H. Topological design of pentamode lattice metamaterials using a ground structure method. Materials & Design, 202, 109523 (2021) |
39 | WU, S., LUO, Z., LI, Z., LIU, S., and ZHANG, L. C. Topological design of pentamode metamaterials with additive manufacturing. Computer Methods in Applied Mechanics and Engineering, 377, 113708 (2021) |
40 | CAI, M., LIU, X., HU, G., and ZHOU, P. Customization of two-dimensional extremal materials. Materials & Design, 218, 110657 (2022) |
41 | WEI, Z., HU, Z., ZHU, R., CHEN, Y., and HU, G. A transformable anisotropic 3D penta-mode metamaterial. Materials & Design, 234, 112306 (2023) |
42 | GROß, M. F., SCHNEIDER, J. L. G., WEI, Y., CHEN, Y., KALT, S., KADIC, M., LIU, X., HU, G., and WEGENER, M. Tetramode metamaterials as phonon polarizers. Advanced Materials, 35 (18), 2211801 (2023) |
43 | WANG, K., LV, H., LIU, X., ZHANG, A., and HU, G. Design of two-dimensional extremal material based on truss lattices. Acta Mechanica Sinica, 39, 723044 (2023) |
44 | CHENG, W., ZHANG, H., WEI, Y., WANG, K., and HU, G. Elastic energy and polarization transport through spatial modulation. Journal of the Mechanics and Physics of Solids, 182, 105475 (2024) |
45 | MILTON, G. W., and CHERKAEV, A. V. Which elasticity tensors are realizable?. Journal of Engineering Materials and Technology, 117 (4), 483- 493 (1995) |
46 | NORRIS, A. N. Acoustic metafluids. The Journal of the Acoustical Society of America, 125 (2), 839- 849 (2009) |
47 | LAYMAN, C. N., NAIFY, C. J., MARTIN, T. P., CALVO, D. C., and ORRIS, G. J. Highly anisotropic elements for acoustic pentamode applications. Physical Review Letters, 111 (2), 024302 (2013) |
48 | HLADKY-HENNION, A. C., VASSEUR, J. O., HAW, G., CROËNNE, C., HAUMESSER, L., and NORRIS, A. N. Negative refraction of acoustic waves using a foam-like metallic structure. Applied Physics Letters, 102 (14), 144103 (2013) |
49 | CHEN, Y., LIU, X., and HU, G. Latticed pentamode acoustic cloak. Scientific Reports, 5, 15745 (2015) |
50 | CHEN, Y., ZHENG, M., LIU, X., BI, Y., SUN, Z., XIANG, P., YANG, J., and HU, G. Broadband solid cloak for underwater acoustics. Physical Review B, 95 (18), 180104(R) (2017) |
51 | SU, X., NORRIS, A. N., CUSHING, C. W., HABERMAN, M. R., and WILSON, P. S. Broadband focusing of underwater sound using a transparent pentamode lens. The Journal of the Acoustical Society of America, 141 (6), 4408- 4417 (2017) |
52 | CHEN, Y., and HU, G. Broadband and high-transmission metasurface for converting underwater cylindrical waves to plane waves. Physical Review Applied, 12 (4), 044046 (2019) |
53 | DONG, H. W., ZHAO, S. D., MIAO, X. B., SHEN, C., ZHANG, X. D., ZHAO, Z. G., ZHANG, C. Z., WANG, Y. S., and CHENG, L. Customized broadband pentamode metamaterials by topology optimization. Journal of the Mechanics and Physics of Solids, 152, 104407 (2021) |
54 | CUSHING, C. W., KELSTEN, M. J., SU, X., WILSON, P. S., HABERMAN, M. R., and NORRIS, A. N. Design and characterization of a three-dimensional anisotropic additively manufactured pentamode material. The Journal of the Acoustical Society of America, 151 (1), 168- 179 (2022) |
55 | KADIC, M., BÜCKMANN, T., STENGER, N., THIEL, M., and WEGENER, M. On the practicability of pentamode mechanical metamaterials. Applied Physics Letters, 100, 191901 (2012) |
56 | KADIC, M., BÜCKMANN, T., SCHITTNY, R., and WEGENER, M. On anisotropic versions of three-dimensional pentamode metamaterials. New Journal of Physics, 15 (2), 023029 (2013) |
57 | SCHITTNY, R., BÜCKMANN, T., KADIC, M., and WEGENER, M. Elastic measurements on macroscopic three-dimensional pentamode metamaterials. Applied Physics Letters, 103 (23), 231905 (2013) |
58 | BUCKMANN, T., THIEL, M., KADIC, M., SCHITTNY, R., and WEGENER, M. An elasto-mechanical unfeelability cloak made of pentamode metamaterials. Nature Communications, 5, 4130 (2014) |
59 | ZHANG, L., SONG, B., ZHAO, A., LIU, R., YANG, L., and SHI, Y. Study on mechanical properties of honeycomb pentamode structures fabricated by laser additive manufacturing: numerical simulation and experimental verification. Composite Structures, 226, 111199 (2019) |
60 | MOHAMMADI, K., MOVAHHEDY, M. R., SHISHKOVSKY, I., and HEDAYATI, R. Hybrid anisotropic pentamode mechanical metamaterial produced by additive manufacturing technique. Applied Physics Letters, 117 (6), 061901 (2020) |
61 | ZHENG, M., LIU, X., CHEN, Y., MIAO, H., ZHU, R., and HU, G. Theory and realization of nonresonant anisotropic singly polarized solids carrying only shear waves. Physical Review Applied, 12 (1), 014027 (2019) |
62 | ZHENG, M., PARK, C. I., LIU, X., ZHU, R., HU, G., and KIM, Y. Y. Non-resonant metasurface for broadband elastic wave mode splitting. Applied Physics Letters, 116 (17), 171903 (2020) |
63 | HU, Z., ZHENG, M., YI, K., ZHU, R., and HU, G. Non-resonant elastic metamaterials for broadband perfect mode conversion and negative reflection. Acta Mechanica Sinica, 39 (12), 123168 (2023) |
64 | WEI, Y., LIU, X., and HU, G. Quadramode materials: their design method and wave property. Materials & Design, 210, 110031 (2021) |
65 | HU, Z., WEI, Z., WANG, K., CHEN, Y., ZHU, R., HUANG, G., and HU, G. Engineering zero modes in transformable mechanical metamaterials. Nature Communications, 14 (1), 1266 (2023) |
66 | PHANI, A. S. and HUSSEIN, M. I. Dynamics of Lattice Materials, John Wiley & Sons, New York (2017) |
67 | BORN, M., and HUANG, K. Dynamical Theory of Crystal Lattices, Clarendon Press, Oxford (1954) |
68 | HUTCHINSON, R. G., and FLECK, N. A. The structural performance of the periodic truss. Journal of the Mechanics and Physics of Solids, 54 (4), 756- 782 (2006) |
69 | WANG, K., CAI, M., ZHOU, P., and HU, G. Homogenization in a simpler way: analysis and optimization of periodic unit cells with Cauchy-Born hypothesis. Structural and Multidisciplinary Optimization, 64, 3911- 3935 (2021) |
70 | NORRIS, A. N. Mechanics of elastic networks. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470 (2172), 20140522 (2014) |
[1] | Long ZHAO, Zeqi LU, Hu DING, Liqun CHEN. A viscoelastic metamaterial beam for integrated vibration isolation and energy harvesting [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1243-1260. |
[2] | Xingzhong WANG, Shiteng RUI, Shaokun YANG, Weiquan ZHANG, Fuyin MA. A low-frequency pure metal metamaterial absorber with continuously tunable stiffness [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1209-1224. |
[3] | Changqi CAI, Chenjie ZHU, Fengyi ZHANG, Jiaojiao SUN, Kai WANG, Bo YAN, Jiaxi ZHOU. Modeling and analysis of gradient metamaterials for broad fusion bandgaps [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1155-1170. |
[4] | Yuxin YAO, Yuansheng MA, Fang HONG, Kai ZHANG, Tingting WANG, Haijun PENG, Zichen DENG. On Klein tunneling of low-frequency elastic waves in hexagonal topological plates [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1139-1154. |
[5] | Jiangcheng CAI, Mingxi DENG. Mathematical framework of nonlinear elastic waves propagating in pre-stressed media [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(10): 1705-1716. |
[6] | Shengjie YAO, Yijun CHAI, Xiongwei YANG, Yueming LI. Elastic twisting metamaterial for perfect longitudinal-torsional wave mode conversion [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(4): 515-524. |
[7] | Wanli YANG, Jinxi LIU, Yizhan YANG, Yuantai HU. The mechanism to reform dynamic performance of an elastic wave-front in a piezoelectric semiconductor by the wave-carrier interaction induced from static biasing fields [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(3): 381-396. |
[8] | Zhenni LI, Yize WANG, Yuesheng WANG. Tunable three-dimensional nonreciprocal transmission in a layered nonlinear elastic wave metamaterial by initial stresses [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(2): 167-184. |
[9] | Fan YANG, Zhaoyang MA, Xingming GUO. Bandgap characteristics of the two-dimensional missing rib lattice structure [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(11): 1631-1640. |
[10] | Chenxu QIANG, Yuxin HAO, Wei ZHANG, Jinqiang LI, Shaowu YANG, Yuteng CAO. Bandgaps and vibration isolation of local resonance sandwich-like plate with simply supported overhanging beam [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(11): 1555-1570. |
[11] | Zhenyu WANG, Zhaoyang MA, Xingming GUO, Dongsheng ZHANG. A new tunable elastic metamaterial structure for manipulating band gaps/wave propagation [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(11): 1543-1554. |
[12] | Hong XIA, Zhendong LUO. Optimized finite difference iterative scheme based on POD technique for 2D viscoelastic wave equation [J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(12): 1721-1732. |
[13] | Junbo CHENG. Harten-Lax-van Leer-contact (HLLC) approximation Riemann solver with elastic waves for one-dimensional elasticplastic problems [J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(11): 1517-1538. |
[14] | Chuan-ping ZHOU;Chao HU;F. MA;Dian-kui LIU. Dynamic stress concentrations in thick plates with two holes based on refined theory [J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(12): 1591-1606. |
[15] | M. KUMAR;R. SAINI. Reflection and refraction of attenuated waves at boundary of elastic solid and porous solid saturated with two immiscible viscous fluids [J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(6): 797-816. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||