[1] KADIC, M., MILTON, G. W., VAN HECKE, M., and WEGENER, M. 3D metamaterials. Nature Reviews Physics, 1(3), 198-210(2019) [2] SCHURIG, D., MOCK, J. J., JUSTICE, B. J., CUMMER, S. A., PENDRY, J. B., STARR, A. F., and SMITH, D. R. Metamaterial electromagnetic cloak at microwave frequencies. Science, 314(5801), 977-980(2006) [3] TSAKMAKIDIS, K. L., BOARDMAN, A. D., and HESS, O.'Trapped rainbow'storage of light in metamaterials. nature, 450(7168), 397-401(2007) [4] YU, K. H., FANG, N. X., HUANG, G. L., and WANG, Q. M. Magnetoactive acoustic metamaterials. Advanced Materials, 30(21), 1706348(2018) [5] OH, J. H., KWON, Y. E., LEE, H. J., and KIM, Y. Y. Elastic metamaterials for independent realization of negativity in density and stiffness. Scientific Reports, 6, 23630(2016) [6] PAN, F., LI, Y. L., LI, Z. Y., YANG, J. L., LIU, B., and CHEN, Y. L. 3D pixel mechanical metamaterials. Advanced Materials, 31(25), 1900548(2019) [7] HAN, T. C., BAI, X., THONG, J. T. L., LI, B. W., and QIU, C. W. Full control and manipulation of heat signatures:cloaking, camouflage and thermal metamaterials. Advanced Materials, 26(11), 1731-1734(2014) [8] MUHAMMAD and LIM, C. W. From photonic crystals to seismic metamaterials:a review via phononic crystals and acoustic metamaterials. Archives of Computational Methods in Engineering, 29(2), 1137-1198(2021) [9] CUMMER, S. A. and SCHURIG, D. One path to acoustic cloaking. New Journal of Physics, 9(3), 45(2007) [10] CHEN, H. Y. and CHAN, C. T. Acoustic cloaking in three dimensions using acoustic metamaterials. Applied Physics Letters, 91(18), 183518(2007) [11] CHEN, C. M., GUO, Z. F., LIU, S. T., FENG, H. D., and QIAO, C. X. Hybrid acousto-elastic metamaterials for simultaneous control of low-frequency sound and vibration. Journal of Applied Physics, 129(5), 054902(2021) [12] LIU, C. R., WU, J. H., YANG, Z. R., and MA, F. Y. Ultra-broadband acoustic absorption of a thin microperforated panel metamaterial with multi-order resonance. Composite Structures, 246, 112366(2020) [13] ZHU, R., LIU, X. N., HU, G. K., SUN, C. T., and HUANG, G. L. A chiral elastic metamaterial beam for broadband vibration suppression. Journal of Sound and Vibration, 333(10), 2759-2773(2014) [14] XU, X. C., BARNHART, M. V., LI, X. P., CHEN, Y. Y., and HUANG, G. L. Tailoring vibration suppression bands with hierarchical metamaterials containing local resonators. Journal of Sound and Vibration, 442, 237-248(2019) [15] OUDICH, M., ASSOUAR, M. B., and HOU, Z. L. Propagation of acoustic waves and waveguiding in a two-dimensional locally resonant phononic crystal plate. Applied Physics Letters, 97(19), 193503(2010) [16] LI, Y. G., CHEN, T. N., WANG, X. P., MA, T., and JIANG, P. Acoustic confinement and waveguiding in two-dimensional phononic crystals with material defect states. Journal of Applied Physics, 116(2), 024904(2014) [17] CHEN, Z. S., GUO, B., YANG, Y. M., and CHENG, C. C. Metamaterials-based enhanced energy harvesting:a review. Physica B:Condensed Matter, 438, 1-8(2014) [18] OUDICH, M. and LI, Y. Tunable sub-wavelength acoustic energy harvesting with a metamaterial plate. Journal of Physics D:Applied Physics, 50(31), 315104(2017) [19] LIU, Z. Y., ZHANG, X. X., MAO, Y. W., ZHU, Y. Y., YANG, Z. Y., CHAN, C. T., and SHENG, P. Locally resonant sonic materials. Science, 289(5485), 1734-1736(2000) [20] LIU, Z. Y., CHAN, C. T., and SHENG, P. Analytic model of phononic crystals with local resonances. Physical Review B, 71(1), 014103(2005) [21] LI, J. and CHAN, C. T. Double-negative acoustic metamaterial. Physical Review E, 70(5), 055602(2004) [22] LAI, Y., WU, Y., SHENG, P., and ZHANG, Z. Q. Hybrid elastic solids. Nature Materials, 10(8), 620-624(2011) [23] YANG, M., MA, G. C., YANG, Z. Y., and SHENG, P. Coupled membranes with doubly negative mass density and bulk modulus. Physical Review Letter, 110(13), 134301(2013) [24] GOFFAUX, C., SÁNCHEZ-DEHESA, J., YEYATI, A. L., LAMBIN, P., KHELIF, A., VASSEUR, J. O., and DJAFARI-ROUHANI, B. Evidence of fano-like interference phenomena in locally resonant materials. Physical Review Letters, 88(22), 225502(2002) [25] ASSOUAR, M. B. and OUDICH, M. Enlargement of a locally resonant sonic band gap by using double-sides stubbed phononic plates. Applied Physics Letters, 100(12), 123506(2012) [26] LI, S. B., CHEN, T. N., WANG, X. P., LI, Y. G., and CHEN, W. H. Expansion of lower-frequency locally resonant band gaps using a double-sided stubbed composite phononic crystals plate with composite stubs. Physics Letters A, 380(25-26), 2167-2172(2016) [27] DONG, Y. K., YAO, H., DU, J., ZHAO, J. B., CHAO, D., and WANG, B. C. Research on lowfrequency band gap property of a hybrid phononic crystal. Modern Physics Letters B, 32(15), 1850165(2018) [28] HUANG, Y. L., LI, J., CHEN, W. Q., and BAO, R. H. Tunable bandgaps in soft phononic plates with spring-mass-like resonators. International Journal of Mechanical Sciences, 151, 300-313(2018) [29] YANG, Q., SONG, T., WEN, X. D., ZHU, H. F., TAN, Z. H., LIU, L. J., LIU, Z. L., and SUN, X. W. Simulations on the wide bandgap characteristics of a two-dimensional tapered scatterer phononic crystal slab at low frequency. Physics Letters A, 384(35), 126885(2020) [30] YANG, D. U., LEE, S., and HUANG, F. Y. Geometric effects on micropolar elastic honeycomb structure with negative Poisson's ratio using the finite element method. Finite Elements in Analysis and Design, 39(3), 187-205(2003) [31] GRIMA, J. N., GATT, R., ALDERSON, A., and EVANS, K. E. On the potential of connected stars as auxetic systems. Molecular Simulation, 31(13), 925-935(2005) [32] DOS REIS, F. and GANGHOFFER, J. F. Equivalent mechanical properties of auxetic lattices from discrete homogenization. Computational Materials Science, 51(1), 314-321(2012) [33] SPADONI, A. and RUZZENE, M. Elasto-static micropolar behavior of a chiral auxeticlattice. Journal of the Mechanics and Physics of Solids, 60(1), 156-171(2012) [34] LIU, X. N., HUANG, G. L., and HU, G. K. Chiral effect in plane isotropic micropolar elasticity and itsapplication to chiral lattices. Journal of the Mechanics and Physics of Solids, 60(11), 1907-1921(2012) [35] CHEN, Y., LIU, X. N., HU, G. K., SUN, Q. P., and ZHENG, Q. S. Micropolar continuum modelling of bi-dimensional tetrachiral lattices. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 470(2165), 20130734(2014) [36] EVANS, K. E. Auxetic polymers:a new range of materials. Endeavour, 15(4), 170-174(1991) [37] LAKES, R. Foam structures with a negative Poisson's ratio. Science, 235(4792), 1038-1040(1987) [38] GRIMA, J. N., GATT, R., ALDERSON, A., and EVANS, K. E. On the potential of connected stars as auxetic systems. Molecular Simulation, 31(13), 925-935(2005) [39] MENG, J., DENG, Z., ZHANG, K., XU, X., and WEN, F. Band gap analysis of star-shaped honeycombs with varied Poisson's ratio. Smart Materials and Structures, 24(9), 095011(2015) [40] EVANS, A. G., HUTCHINSON, J. W., FLECK, N. A., ASHBY, M. F., and WADLEY, H. N. G. The topological design of multifunctional cellular metals. Progress in Materials Science, 46(3-4), 309-327(2001) [41] XIA, R., SONG, X. K., SUN, L. J., WU, W. W., LI, C. L., CHENG, T. B., and QIAN, G. Mechanical properties of 3D isotropic anti-tetrachiral metastructure. Physica Status Solidi B:Basic Solid State Physics, 255(4), 1700343(2018) [42] ZHANG, K., ZHAO, C., LUO, J., MA, Y. B., and DENG, Z. C. Analysis of temperature-dependent wave propagation for programmable lattices. International Journal of Mechanical Sciences, 171, 105372(2020) [43] LIU, X. N., HU, G. K., SUN, C. T., and HUANG, G. L. Wave propagation characterization and design of two-dimensional elastic chiral metacomposite. Journal of Sound and Vibration, 330(11), 2536-2553(2011) [44] QI, D. X., YU, H. B., HU, W. X., HE, C. W., WU, W. W., and MA, Y. B. Bandgap and wave attenuation mechanisms of innovative reentrant and anti-chiral hybrid auxetic metastructure. Extreme Mechanics Letters, 28, 58-68(2019) [45] SHI, H. Y. Y., TAY, T. E., and LEE, H. P. Numerical studies on composite meta-material structure for mid to low frequency elastic wave mitigation. Composite Structures, 195, 136-146(2018) [46] SMITH, C. W., GRIMA, J. N., and EVANS, K. E. A novel mechanism for generating auxetic behaviour in reticulated foams:missing rib foam model. Acta Materialia, 48(17), 4349-4356(2000) [47] WANG, Y. F., WANG, Y. S., and ZHANG, C. Bandgaps and directional propagation of elastic waves in 2D square zigzag lattice structures. Journal of Physics D:Applied Physics, 47(48), 485102(2014) [48] XU, Y. L., CHEN, C. Q., and TIAN, X. G. Wave characteristics of two-dimensional hierarchical hexagonal lattice structures. Journal of Vibration and Acoustics, 136(1), 011011(2014) |