Articles

Active control scheme for improving mass resolution of film bulk acoustic resonators

Expand
  • 1. Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing 400044, P. R. China;
    2. Microsystem Research Center, Chongqing University, Chongqing 400044, P. R. China

Received date: 2011-03-23

  Revised date: 2011-04-04

  Online published: 2011-06-01

Supported by

Project supported by the National Natural Science Foundation of China (No. 61076106), the National High Technology Research and Development Program of China (863 Program) (No. 2008AA04Z310), and the Cultivation Fund of the Key Scientific and Technical Innovation Project of Ministry of Education of China (No. 708072)

Abstract

High mass resolution of sensors based on film bulk acoustic resonators (FBARs) is required for the detection of small molecules with the low concentration. An active control scheme is presented to improve the mass resolution of the FBAR sensors by adding a feedback voltage onto the driving voltage between two electrodes of the FBAR sensors. The feedback voltage is obtained by giving a constant gain and a constant phase shift to the current on the electrodes of the FBAR sensors. The acoustic energy produced by the feedback voltage partly compensates the acoustic energy loss due to the material damping and the acoustic scattering, and thus improves the quality factor and the mass resolution of the FBAR sensors. An explicit expression relating to the impedance and the frequency for an FBAR sensor with the active control is derived based on the continuum theory by neglecting the influence of the electrodes. Numerical simulations show that the impedance of the FBAR sensor strongly depends on the gain and the phase shift of the feedback voltage, and the mass resolution of the FBAR sensor can greatly be improved when the appropriate gain and the phase shift of the feedback voltage are used. The active control scheme also provides an effective solution to improve the resolution of the quartz crystal microbalance (QCM).

Cite this article

HE Xue-Feng;LIU Xin;YIN Xian-Fang;WEN Zhi-Yu;CHEN Ke-Wan . Active control scheme for improving mass resolution of film bulk acoustic resonators[J]. Applied Mathematics and Mechanics, 2011 , 32(6) : 749 -756 . DOI: 10.1007/s10483-011-1454-9

References


[1] Marx, K. A. Quartz crystal microbalance: a useful tool for studying thin polymer films and
complex biomolecular systems at the solution-surface interface. Biomacromolecules, 4(5), 1099–
1120 (2003)

[2] Reed, C. E., Kanazawa, K. K., and Kaufman, J. H. Physical description of a viscoelastically
loaded AT-cut quartz resonator. Journal of Applied Physics, 68(5), 1993–2001 (1990)

[3] Kanazawa, K. K. Mechanical behaviour of films on the quartz microbalance. Faraday Discussions,
107, 77–90 (1997)

[4] Arce, L., Zougagh, M., Arce, C., Moreno, A., Rios, A., and Valcarcel, M. Self-assembled
monolayer-based piezoelectric flow immunosensor for the determination of canine immunoglobulin.
Biosensors and Bioelectronics, 22(12), 3217–3223 (2007)

[5] Rabe, J., Buttgenbach, S., Schroder, J., and Hauptmann, P. Monolithic miniaturized quartz microbalance
array and its application to chemical sensor systems for liquids. IEEE Sensors Journal,
3(4), 361–368 (2003)

[6] Zhao, Y. P., Wang, L. S., and Yu, T. X. Mechanics of adhesion in MEMS—a review. Journal of
Adhesion Science and Technology, 17(4), 519–546 (2003)


[7] Zhang, L. X. and Zhao, Y. P. Electromechanical model of RF MEMS switches. Microsystem
Technologies, 9(6-7), 420–426 (2003)

[8] An, P., Chen, J., and Hao, Y. L. Modeling and simulation of a novel vertical actuator based on
electrowetting on dielectric. Acta Mechanica Sinica, 25(5), 669–675 (2009)

[9] Zhang, K., Cui, Y. J., Xiong, C. Y., Wang, C. S., and Fang, J. Electro-mechanical coupling analysis
of MEMS structures by boundary element method. Acta Mechanica Sinica, 20(2), 185–191 (2004)

[10] Hu, Y. Q., Zhao, Y. P., and Yu, T. X. Tensile tests of micro anchors anodically bonded between
Pyrex glass and aluminum thin film coated on silicon wafer. Microelectronics Reliability, 48(10),
1720–1723 (2008)

[11] Fu, Y. Q., Luo, J. K., Du, X. Y., Flewitt, A. J., Li, Y., Markx, G. H., Walton, A. J., and Milne,
W. I. Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic
applications: a review. Sensors and Actuators B, 143(2), 606–619 (2010)

[12] Weber, J., Link, M., Primig, R., Pitzer, D., Wersing, W., and Schreiter, M. Investigation of
the scaling rules determining the performance of film bulk acoustic resonators operating as mass
sensors. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 54(2), 405–412
(2007)

[13] Gabl, R., Feucht, H. D., Zeininger, H., Eckstein, G., Schreiter, M., Primig, R., Pitzer, D., and
Wersing, W. First results on label-free detection of DNA and protein molecules using a novel integrated
sensor technology based on gravimetric detection principles. Biosensors and Bioelectronics,
19(6), 615–620 (2004)

[14] Weber, J., Albers, W. M., Tuppurainen, J., Link, M., Gabl, R., Wersing, W., and Schreiter, M.
Shear mode FBARs as highly sensitive liquid biosensors. Sensors and Actuators A, 128(1), 84–88
(2006)

[15] Rey-Mermet, S., Lanz, R., and Muralt, P. Bulk acoustic wave resonator operating at 8 GHz for
gravimetric sensing of organic films. Sensors and Actuators B, 114(2), 681–686 (2006)

[16] Zhang, H. and Kim, E. S. Micromachined acoustic resonant mass sensor. Journal of Microelectromechanical
Systems, 14(4), 699–706 (2005)

[17] Kang, Y. R., Kang, S. C., Paek, K. K., Kim, Y. K., Kim, S. W., and Ju, B. K. Air-gap type
film bulk acoustic resonator using flexible thin substrate. Sensors and Actuators A, 117(1), 62–70
(2005)

[18] Wingqvist, G., Bjurstrom, J., Hellgren, A. C., and Katardjiev, I. Immunosensor utilizing a shear
mode thin film bulk acoustic sensor. Sensors and Actuators B, 127(1), 248–252 (2007)

[19] Tukkiniemi, K., Rantala, A., Nirschl, M., Pitzer, D., Huber, T., and Schreiter, M. Fully integrated
FBAR sensor matrix for mass detection. Procedia Chemistry, 1, 1051–1054 (2009)

[20] Johnston, M. L., Kymissis, I., and Shepard, K. L. FBAR-CMOS oscillator array for mass-sensing
applications. IEEE Sensors Journal, 10(6), 1042–1047 (2010)

[21] Nirschl, M., Rantala, A., Tukkiniemi, K., Auer, S., Hellgren, A. C., Pitzer, D., Schreiter, M.,
and Vikholm-Lundin, I. CMOS-integrated film bulk acoustic resonators for label-free biosensing.
Sensors, 10(5), 4180–4193 (2010)

[22] Lakin, K. M. A review of thin-film resonator technology. IEEE Microwave Magazine, 4(4), 61–67
(2003)

[23] Link, M., Weber, J., Schreiter, M., Wersing, W., Elmazria, O., and Alnot, P. Sensing characteristics
of high-frequency shear mode resonators in glycerol solutions. Sensors and Actuators B,
121(2), 372–378 (2007)

[24] Nirschl, M., Schreiter, M., and Voros, J. Comparison of FBAR and QCM-D sensitivity dependence
on adlayer thickness and viscosity. Sensors and Actuators A, 165(2), 415–421 (2011)

[25] Qiu, X. T., Tang, R., Zhu, J., Oiler, J., Yu, C. J., Wang, Z. Y., and Yu, H. Y. Experiment
and theoretical analysis of relative humidity sensor based on film bulk acoustic-wave resonator.
Sensors and Actuators B, 147(2), 381–384 (2010)

[26] Ozgur, U., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Dogan, S., Avrutin, V., Cho, S.
J., and Morkoc, H. A comprehensive review of ZnO materials and devices. Journal of Applied
Physics, 98(4), 041301 (2005)

 

Outlines

/

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals