[1] Marx, K. A. Quartz crystal microbalance: a useful tool for studying thin polymer films and
complex biomolecular systems at the solution-surface interface. Biomacromolecules, 4(5), 1099–
1120 (2003)
[2] Reed, C. E., Kanazawa, K. K., and Kaufman, J. H. Physical description of a viscoelastically
loaded AT-cut quartz resonator. Journal of Applied Physics, 68(5), 1993–2001 (1990)
[3] Kanazawa, K. K. Mechanical behaviour of films on the quartz microbalance. Faraday Discussions,
107, 77–90 (1997)
[4] Arce, L., Zougagh, M., Arce, C., Moreno, A., Rios, A., and Valcarcel, M. Self-assembled
monolayer-based piezoelectric flow immunosensor for the determination of canine immunoglobulin.
Biosensors and Bioelectronics, 22(12), 3217–3223 (2007)
[5] Rabe, J., Buttgenbach, S., Schroder, J., and Hauptmann, P. Monolithic miniaturized quartz microbalance
array and its application to chemical sensor systems for liquids. IEEE Sensors Journal,
3(4), 361–368 (2003)
[6] Zhao, Y. P., Wang, L. S., and Yu, T. X. Mechanics of adhesion in MEMS—a review. Journal of
Adhesion Science and Technology, 17(4), 519–546 (2003)
[7] Zhang, L. X. and Zhao, Y. P. Electromechanical model of RF MEMS switches. Microsystem
Technologies, 9(6-7), 420–426 (2003)
[8] An, P., Chen, J., and Hao, Y. L. Modeling and simulation of a novel vertical actuator based on
electrowetting on dielectric. Acta Mechanica Sinica, 25(5), 669–675 (2009)
[9] Zhang, K., Cui, Y. J., Xiong, C. Y., Wang, C. S., and Fang, J. Electro-mechanical coupling analysis
of MEMS structures by boundary element method. Acta Mechanica Sinica, 20(2), 185–191 (2004)
[10] Hu, Y. Q., Zhao, Y. P., and Yu, T. X. Tensile tests of micro anchors anodically bonded between
Pyrex glass and aluminum thin film coated on silicon wafer. Microelectronics Reliability, 48(10),
1720–1723 (2008)
[11] Fu, Y. Q., Luo, J. K., Du, X. Y., Flewitt, A. J., Li, Y., Markx, G. H., Walton, A. J., and Milne,
W. I. Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic
applications: a review. Sensors and Actuators B, 143(2), 606–619 (2010)
[12] Weber, J., Link, M., Primig, R., Pitzer, D., Wersing, W., and Schreiter, M. Investigation of
the scaling rules determining the performance of film bulk acoustic resonators operating as mass
sensors. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 54(2), 405–412
(2007)
[13] Gabl, R., Feucht, H. D., Zeininger, H., Eckstein, G., Schreiter, M., Primig, R., Pitzer, D., and
Wersing, W. First results on label-free detection of DNA and protein molecules using a novel integrated
sensor technology based on gravimetric detection principles. Biosensors and Bioelectronics,
19(6), 615–620 (2004)
[14] Weber, J., Albers, W. M., Tuppurainen, J., Link, M., Gabl, R., Wersing, W., and Schreiter, M.
Shear mode FBARs as highly sensitive liquid biosensors. Sensors and Actuators A, 128(1), 84–88
(2006)
[15] Rey-Mermet, S., Lanz, R., and Muralt, P. Bulk acoustic wave resonator operating at 8 GHz for
gravimetric sensing of organic films. Sensors and Actuators B, 114(2), 681–686 (2006)
[16] Zhang, H. and Kim, E. S. Micromachined acoustic resonant mass sensor. Journal of Microelectromechanical
Systems, 14(4), 699–706 (2005)
[17] Kang, Y. R., Kang, S. C., Paek, K. K., Kim, Y. K., Kim, S. W., and Ju, B. K. Air-gap type
film bulk acoustic resonator using flexible thin substrate. Sensors and Actuators A, 117(1), 62–70
(2005)
[18] Wingqvist, G., Bjurstrom, J., Hellgren, A. C., and Katardjiev, I. Immunosensor utilizing a shear
mode thin film bulk acoustic sensor. Sensors and Actuators B, 127(1), 248–252 (2007)
[19] Tukkiniemi, K., Rantala, A., Nirschl, M., Pitzer, D., Huber, T., and Schreiter, M. Fully integrated
FBAR sensor matrix for mass detection. Procedia Chemistry, 1, 1051–1054 (2009)
[20] Johnston, M. L., Kymissis, I., and Shepard, K. L. FBAR-CMOS oscillator array for mass-sensing
applications. IEEE Sensors Journal, 10(6), 1042–1047 (2010)
[21] Nirschl, M., Rantala, A., Tukkiniemi, K., Auer, S., Hellgren, A. C., Pitzer, D., Schreiter, M.,
and Vikholm-Lundin, I. CMOS-integrated film bulk acoustic resonators for label-free biosensing.
Sensors, 10(5), 4180–4193 (2010)
[22] Lakin, K. M. A review of thin-film resonator technology. IEEE Microwave Magazine, 4(4), 61–67
(2003)
[23] Link, M., Weber, J., Schreiter, M., Wersing, W., Elmazria, O., and Alnot, P. Sensing characteristics
of high-frequency shear mode resonators in glycerol solutions. Sensors and Actuators B,
121(2), 372–378 (2007)
[24] Nirschl, M., Schreiter, M., and Voros, J. Comparison of FBAR and QCM-D sensitivity dependence
on adlayer thickness and viscosity. Sensors and Actuators A, 165(2), 415–421 (2011)
[25] Qiu, X. T., Tang, R., Zhu, J., Oiler, J., Yu, C. J., Wang, Z. Y., and Yu, H. Y. Experiment
and theoretical analysis of relative humidity sensor based on film bulk acoustic-wave resonator.
Sensors and Actuators B, 147(2), 381–384 (2010)
[26] Ozgur, U., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Dogan, S., Avrutin, V., Cho, S.
J., and Morkoc, H. A comprehensive review of ZnO materials and devices. Journal of Applied
Physics, 98(4), 041301 (2005)
|