[1] Burg, T. P., Mirza, A. R., Milovic, N., and Tsau, C. H. Vacuum-packaged suspended microchannel resonant mass sensor for biomolecular detection. Journal of Microelectromechanical Systems, 15, 1466-1476(2006)
[2] Zhang, W. H. and Turner, K. L. Application of parametric resonance amplification in a singlecrystal silicon micro-oscillator based mass sensor. Sensors and Actuators A:Physical, 122, 23-30(2005)
[3] Yabuno, H. and Kaneko, H. Van der Pol type self-excited micro-cantilever probe of atomic force microscopy. Nonlinear Dynamics, 54, 137-149(2008)
[4] Nayfeh, A. H. and Younis, M. I. Dynamics of MEMS resonators under superharmonic and subharmonic excitations. Journal of Micromechanics and Microengineering, 15, 1840-1847(2005)
[5] Chaste, J., Eichler, A., Moser, J., Ceballos, G., Rurali, R., and Bachtold, A. A nanomechanical mass sensor with yoctogram resolution. Nature Nanotechnology, 7, 301-304(2012)
[6] Eom, K., Park, H. S.,Yoon, D. S., and Kwon, T. Nanomechanical resonators and their application in biological/chemical detection:nanomechanics principles. Physics Report, 503, 115-163(2011)
[7] Nayfeh, A. H., Younis, M. I., and Abdel-Rahman E. M. Dynamic pull-in phenomenon in MEMS resonantors. Nonlinear Dynamics, 48, 153-163(2007)
[8] Ehsan, M. M., Hossein, N. P., Aghil, Y. K., and Tajaddodianfar, F. Chaos prediction in MEMSNEMS resonators. International Journal of Engineering Science, 82, 74-83(2014)
[9] Haghighi, H. S. and Markazi, A. H. D. Chaos prediction and control in MEMS resonators. Communications in Nonlinear Science and Numerical Simulation, 15, 3091-3099(2010)
[10] Ghayesh, M. H., Farokhi, H., and Amabili, M. Nonlinear behaviour of electrically actuated MEMS resonators. International Journal of Engineering Science, 71, 137-155(2013)
[11] Haghighi, H. S. and Markazi, A. H. Chaos prediction and control in MEMS resonators. Communications in Nonlinear Science and Numerical Simulation, 15, 3091-3099(2010)
[12] Rhoads, J. F., Shaw, S. W., Turner, K. L., Moehlis, J., Demartini, B. E., and Zhang, W. Generalized parametric resonance in electrostatically actuated microelectromechanical oscillators. Journal of Sound and Vibration, 296, 797-829(2006)
[13] DeMartini, B. E., Butterfield, H. E., Moehlis, J., and Turner, K. L. Chaos for a microelectromechanical oscillator governed by the nonlinear mathieu equation. Journal of Microelectromechanical Systems, 16, 1314-1323(2007)
[14] Ke, C. K. Resonant pull-in of a double-sided driven nanotube-based electromechanical resonator. Journal of Applied Physics, 105, 1-8(2009)
[15] Caruntu, D. I. and Knecht, M. W. On nonlinear response near-half natural frequency of electrostatically actuated microresonators. International Journal of Structural Stability and Dynamics, 11, 641-672(2011)
[16] Younis, M. I. and Nayfeh, A. H. A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dynamics, 31, 91-117(2003)
[17] Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J. H., Kim, P., Choi, J. Y., and Hong, B. H. Large-scale pattern growth of grapheme films for stretchable transparent electrodes. nature, 457, 706-709(2009)
[18] Wang, Q. and Arash, B. A review on applications of carbon nanotubes and graphemes as nanoresonator sensors. Computational Materials Science, 82, 350-360(2014)
[19] Jiang, S. W., Gong, X. H., and Guo, X. Potential application of graphene nanomechanical resonator as pressure sensor. Solid State Communications, 193, 30-33(2014)
[20] Liu, C. C., Yue, S. C., and Xu, Y. Z. Nonlinear resonances of electrostatically actuated nanobeam. Journal of Vibroengineering, 16, 2484-2493(2014)
[21] Liang, B. B., Zhang, L., Wang, B. L., and Zhou, S. A variational size-dependent model for electrostatically actuated NEMS incorporating nonlinearities and Casimir force. Physica E, 71, 21-30(2015)
[22] Chen, C. P., Li, S. J., Dai, L. M., and Qian, C. Z. Buckling and stability analysis of a piezoelectric viscoelastic nanobeam subjected to van der Waals forces. Communications in Nonlinear Science and Numerical Simulation, 19, 1626-1637(2014)
[23] Zhang, W. M., Yan, H., Peng, Z. K., and Meng, G. Electrostatic pull-in instability in MEMS/NEMS:a review. Sensors and Actuators A:Physical, 214, 187-218(2014)
[24] Duan, J., Li, Z., and Liu, J. Pull-in instability analyses for NEMS actuators with quartic shape approximation. Applied Mathematics and Mechanics (English Edition), 37(3), 303-314(2016) DOI 10.1007/s10483-015-2007-6
[25] Zhu, J. and Liu, R. Sensitivity analysis of pull-in voltage for RF MEMS switch based on modified couple stress theory. Applied Mathematics and Mechanics (English Edition), 36(12), 1555-1568(2015) DOI 10.1007/s10483-015-2005-6
[26] Huang, J. M., Liew, K. M., Wong, C. H., Rajendran, S., Tan, M. J., and Liu, A. Q. Mechanical design and optimization of capacitive micromachined switch. Sensors and Actuators A:Physical, 93, 273-285(2001)
[27] Nayfeh, A. H., Chin, C., and Nayfeh, S. A. Nonlinear normal modes of a cantilever beam. Journal of Vibration and Acoustics, 117, 477-481(1995)
[28] Chen, F. Q., Wu, Z. Q., and Chen, Y. S. Bifurcation and universal unfolding for a rotating shaft with unsymmetrical stiffness. ACTA Mechanica Sinica (English Series), 18, 181-187(2002)
[29] Stephen, S. Pitchfork bifurcation with a heteroclinic orbit:normal form, recognition criteria, and universal unfolding. Journal of Differential Equations, 105, 63-93(1993) |