[1] Neumann, C. Untersuchungen über das Logarithmische und Newton'sche Potentiel, Teubner, Leipzig (1877)
[2] Fredholm, I. Sur une Nouvelle Methode Pour la Resolution du Probleme de Dirichlet, MittagLeffler Institute, Malmo (1955)
[3] Fredholm, I. Sur une classe d'equations fonctionnelles. Acta Mathematica, 27, 365-390(1903)
[4] Kantorovich, L. V. and Krylov, V. I. Approximate Methods of Higher Analysis (in Russian), Gostechizdat, Moscow (1950)
[5] Mikhlin, S. G. Multidimensional Singular Integrals and Integral Equations (in Russian), Physmathgiz, Moscow (1962)
[6] Pham, L. Potentiels e'lastique. Journal de Mecanique, 6, 211-242(1967)
[7] Neustadt, Y. S. On calculation of the shells with holes (in Russian). Journal of Applied Mathematics and Mechanics, 33, 764-768(1969)
[8] Neustadt, Y. S. On one calculation method of plates with holes and its numerical implementation (in Russian). Izvestia of the USSR Academy of Sciences, Mechanics of Solids, 1, 80-90(1970)
[9] Mikhlin, S. G. The Problem of the Minimum of the Quadratic Functional (in Russian), Gostechizdat, Lenindgrad (1952)
[10] Neustadt, Y. S. On One Energy Inequality and Its Application in the Theory of Elasticity. Applied Problems of the System Analysis (in Russian), Kuibyshev State University Press, Kuibyshev (1978)
[11] Slobodetsky, L. N. Sobolev generalized distibution spaces and their application to boundary problems for partial differential equations (in Russian). Proceedings of the Leningrad State Pedagogical Institute, 197, 54-112(1958)
[12] Nikol'skii, S. M. Imbedding theorems. Encyclopedia of Mathematics, Springer, New York (2001)
[13] Ciarlet, P. G. Mathematical Elasticity, Vol. 3:Theory of Shells, Elsevier, Amsterdam (2000)
[14] Ciarlet, P. G. On Korn's inequality. Chinese Annals of Mathematics, Series B, 31, 607-618(2010)
[15] Novozhilov, V. V., Chernykh, K. F., and Mikhailovsky, E. I. Linear Theory of Thin Shells (in Russian), Politekhnika, Leningrad (1991)
[16] Zhilin, P. A. Applied Mechanics. Fundamentals of the Shell Theory (in Russian), Publishing House of the Politechnical University, Saint Petersburg (2006)
[17] Novozhilov, V. V. Theory of Thin Shells (in Russian), Sudpromgiz, Lenindgrad (1962)
[18] Nikol'skii, S. M. Sobolev space. Encyclopedia of Mathematics, Springer, New York (2001)
[19] Lions, J. L. and Magenes, E. Problemes aux Limites non Homogenes a Donnees Irregulieres, Springer, Paris (1968)
[20] Friedrichs, K. O. On the boundary-value problems of the theory of elasticity and Korn's Inequality. Annals of Mathematics, 48, 441-471(1947)
[21] Ciarlet, P. G. and Mardare, S. On Korn's inequalities in curvilinear coordinates. Mathematical Models and Methods in Applied Sciences, 11, 1379-1391(2001)
[22] Lax, P. D. On Cauchy's problrms for hiperbolic equations and differentiability of the solutions of elliptic equations. Communications on Pure and Applied Mathematics, 8, 615-653(1955)
[23] Brezis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York (2010)
[24] Gunther, N. M. Potential Theory and Its Applications to Basic Problems of Mathematical Physics (in Russian), Gostechizdat, Moscow (1953)
[25] Hormander, L. The Analysis of Linear Partial Differential Operators, Vol. 1, Distribution Theory and Fourier Analysis, Vol. 2, Differential Operators with Constant Coefficients, Springer-Verlag, Berlin (1983)
[26] Antosik, P., Mikusinsky, J., and Sikorsky, R. Theory of Distribution. Sequential Approach, Elsevier Publiching Company, Amsterdam (1973)
[27] Chen, G., Coleman, M. P., Ma, D., Morris, P. J., and You, P. The fundamental solution for shallow circular cylindrical shells. International Journal of Engineering Science, 38, 1235-1257(2000)
[28] Lukasiewicz, S. Local Loads in Plates and Shells, Polish Scientific Publishers, Warsaw (1979)
[29] Chen, G. and Zhou, J. Boundary Element Methods, Academic Press, London (1992) |