[1] HELLINGER, E. Die allgemeinen Ansätze der Mechanik der Kontinua. Enzyklopädie der Mathematischen Wissenschaften, 4(30), 654-655(1914) [2] REISSNER, E. On a variational theorem in elasticity. Journal of Mathematics and Physics, 29(4), 90-95(1950) [3] DE VEUBEKE, F. B. M. Diffusion des inconnues hyperstatiques dans les voilures á longeron couplés. Bulletin du Service Technique de l’Aéronautique, 24, 1-56(1951) [4] HU, H. C. On the variational princinples in the theory of elasticity and the plasticity (in Chinese). Acta Physica Sinica, 10(3), 259-290(1954) [5] NAGHDI, P. M. On a variational theorem in elasticity and its application to shell theory. Journal of Applied Mechanics, 31, 647-653(1954) [6] HU, H. C. On some variational methods on the theory of elasticity and the theory of plasticity. Scientia Sinica, 4(1), 33-54(1955) [7] WASHIZU, K. On the variational principles of elasticity and plasticity. Technical Report 25-18, Aeroelastic and Structures Research Laboratory, MIT, Cambridge (1955) [8] REISSNER, E. On a variational theorem for finite elastic deformations. Journal of Mathematics and Physics, 32, 129-153(1953) [9] GURTIN, M. E. Variational principles for linear elastodynamics. Archive for Rational Mechanics and Analysis, 16, 234-250(1964) [10] REISSNER, E. A note on variational principles in elasticity. International Journal of Solids Struction, 1(1), 93-95(1965) [11] FRAEIJS DE VEUBEKE, B. M. Displacement and Equilibrium Models in Stress Analysis, Wiley, London, 145-197(1965) [12] TONTI, E. Variational principles in elastostatics. Mechanica, 2, 201-208(1967) [13] WASHIZU, K. Variational Methods in Elasticity and Plasticity, Pergamon Press, New York (1968) [14] PIAN, T. H. H. and TONG, P. Basis of finite element methods for solid continua. International Journal for Numerical Methods in Engineering, 1, 3-28(1969) [15] DE VEUBEKE, F. B. A new variational principle for finite elastic deformations. International Journal of Engineering Science, 10, 745-763(1972) [16] NEMAT-NASSER, S. General variational principles in nonlinear and linear elasticity with applications. Mechanics Today, 1, 214-261(1973) [17] FRAEIJS DE VEUBEKE, B. M. Variational principles and the patch test. International Journal for Numerical Methods in Engineering, 8, 783-801(1974) [18] ODEN, J. T. and REDDY, J. N. On dual complementary variational principles in mathematical physics. International Journal of Engineering Science, 12, 1-29(1974) [19] OGDEN, R. W. A note on variational theorems in non-linear elastostatics. Proceedings of the Cambridge Philosophical Society, 77, 609-615(1975) [20] BUFFER, H. Generalized variational principles with relaxed continuity requirements for certain nonlinear problems with an application to nonlinear elasticity. Computer Methods in Applied Mechanics and Engineering, 19, 235-255(1979) [21] HU, H. C. Variational Principles in Elasticity and Their Application, Science Publisher, Beijing (1980) [22] CHIEN, W. Z. Variational Principles and Finite Element Method (in Chinese), Science Press, Beijing (1980) [23] ODEN, J. T. and REDDY, J. N. Variational Methods in Theoretical Mechanics, Springer-Verlag, Berlin (1982) [24] CHIEN, W. Z. Method of higher-order Lagrange multiplier and generalized variational principles of elasticity with more general forms. Applied Mathematics and Mechanics (English Edition), 4(2), 143-157(1983) [25] SUN, B. H. Generalized Variaonal Principle in Elasticity, M. Sc. disseration, Xi’an Insitute of Highway, China (1983) [26] REISSNER, E. Variational Principles in Elasticity: Handbook of Finite Element Methods, McGraw-Hill, London (1983) [27] REISSNER, E. Formulation of variational theorems in geometrically nonlinear elasticity. Journal of Engineering Mechanics, 110, 1377-1390(1984) [28] REISSNER, E. On mixed variational formulations in finite elasticity. Acta Mechanica, 56, 117-125 (1985) [29] CHIEN, W. Z. Generalized Variational Princinples (in Chinese), Knowledge Publisher, Beijing (1985) [30] REISSNER, E. Some aspects of the variational principles problem in elasticity. Computational Mechanics, 1, 3-9(1986) [31] SUN, B. H. Generalized Variational Principle of Electromagnatic Continua (in Chinese), Peking University Press, 178-184(1991) [32] FELIPPA, C. A. A survey of parametrized variational principles and applications to computational mechanics. Computer Methods in Applied Mechanics and Engineering, 113, 109-139(1994) [33] FELIPPA, C. A. On the original publication of the general canonical functional of linear elasticity. Journal of Applied Mechanics, 67(1), 217-219(2000) [34] KURRER, K. E., THRIFT, P., and RAMM, E. The History of the Theory of Structures Searching for Equilibrium, Wilhelm Ernst & Sohn, Berlin (2018) [35] TRUESDELL, C. and TOUPIN, R. The Classical Field Theories, Springer, Berlin (1960) [36] TRUESDELL, C. and NOLL, W. The Non-Linear Field Theories of Mechanics (ed. ANTMAN, S. S.), Springer, Berlin (2004) |