[1] CATTANEO, C. On a form of heat equation which eliminates the paradox of instantaneous propagation. Comptes Rendus de l’Académie des Sciences de Paris, 247, 431–433(1958) [2] CHEN, P. J. and GURTIN, M. E. On a theory of heat involving two temperatures. Zeitschrift für Angewandte Mathematik und Physik, 19, 614–627(1968) [3] CHEN, P. J., GURTIN, M. E., and WILLIAMS, W. O. A note on non-simple heat conduction. Zeitschrift für Angewandte Mathematik und Physik, 19, 969–970(1968) [4] CHEN, P. J., GURTIN, M. E., and WILLIAMS, W. O. On the thermodynamics of nonsimple materials with two temperatures. Zeitschrift für Angewandte Mathematik und Physik, 20, 107–112(1968) [5] GREEN, A. E. and NAGHDI, P. M. On undamped heat waves in an elastic solid. Journal of Thermal Stresses, 15, 253–264(1992) [6] GREEN, A. E. and NAGHDI, P. M. Thermoelasticity without energy dissipation. Journal of Elasticity, 31, 189–208(1993) [7] GREEN, A. E. and NAGHDI, P. M. A unified procedure for construction of theories of deformable media. I. classical continuum physics. Proceedings of the Royal Society of London A, 448, 335–356(1995) [8] GREEN, A. E. and NAGHDI, P. M. A unified procedure for construction of theories of deformable media. II. generalized continua. Proceedings of the Royal Society of London A, 448, 357–377(1995) [9] GREEN, A. E. and NAGHDI, P. M. A unified procedure for construction of theories of deformable media. III. mixtures of interacting continua. Proceedings of the Royal Society of London A, 448, 379–388(1995) [10] TZOU, D. Y. The generalized lagging response in small-scale and high-rate heating. International Journal of Heat and Mass Transfer, 38, 3231–3240(1995) [11] CHOUDHURI, S. K. R. On a thermoelastic three-phase-lag model. Journal of Thermal Stresses, 30, 231–239(2007) [12] QUINTANILLA, R. Moore-Gibson-Thompson thermoelasticity. Mathematics and Mechanics of Solids, 24, 4020–4031(2019) [13] ERINGEN, A. C. Microcontinuum Field Theories. I. Foundations and Solids, Springer, New York (1999) [14] IEŞAN, D. Thermoelastic models of continua. Solid Mechanics and Its Applications, Kluwer Academic Publisher, Dordrecht (2004) [15] COWIN, S. C. and NUNZIATO, J. W. Linear elastic materials with voids. Journal of Elasticity, 13, 125–147(1983) [16] GROT, R. Thermodynamics of a continuum with microstructure. International Journal of Engineering Science, 7, 801–814(1969) [17] RIHA, P. On the theory of heat-conducting micropolar fluids with microtemperatures. Acta Mechanica, 23, 1–8(1975) [18] RIHA, P. On the microcontinuum model of heat conduction in materials with inner structure. International Journal of Engineering Science, 14, 529–535(1976) [19] IEŞAN, D. Thermoelasticity of bodies with microstructure and microtemperatures. International Journal of Solids and Structures, 44, 8648–8653(2007) [20] BAZARRA, N., FERNÁNDEZ, J. R., and QUINTANILLA, R. Lord-Shulman thermoelasticity with microtemperatures. Applied Mathematics and Optimization, 84, 1667–1685(2021) [21] LIU, Z., QUINTANILLA, R., and WANG, Y. Dual-phase-lag heat conduction with microtemperatures. Zeitschrift für Angewandte Physik, 101, e202000167(2021) [22] IEŞAN, D. Incremental equations in thermoelasticity. Journal of Thermal Stresses, 3, 41–56(1980) [23] KNOPS, R. J. and WILKES, E. W. Theory of elastic stability. Handbuch der Physic, Springer-Verlag, Berlin (1973) [24] AMES, B. and STRAUGHAN, B. Continuous dependence results for initially prestressed thermoelastic bodies. International Journal of Engineering Science, 30, 7–13(1992) [25] KNOPS, R. J. Instability and the ill-posed Cauchy problem in elasticity. Mechanics of Solids, The Rodney Hill 60th Anniversary, Elsevier, Berlin (1982) [26] KNOPS, R. J. and PAYNE, L. E. Growth estimates for solutions of evolutionary equations in Hilbert spaces with applications to elastodynamics. Archive of Rational Mechanics and Analysis, 41, 363–398(1971) [27] PELLICER, M. and QUINTANILLA, R. On uniqueness and instability for some thermomechanical problems involving the Moore-Gibson-Thompson equation. Zeitschrift für Angewandte Physik, 71, 84(2020) [28] IEŞAN, D. and QUINTANILLA, R. On the theory of thermoelasticity with microtemperatures. Journal of Thermal Stresses, 23, 199–215(2000) [29] IEŞAN, D. and QUINTANILLA, R. On thermoelastic bodies with inner structure and microtemperatures. Journal of Mathematical Analysis and Applications, 354, 12–23(2009) [30] BEZEROVSKI, A., ENGELBRETCH, J., and MAUGIN, G. A. Thermoelasticity with dual internal variables. Journal of Thermal Stresses, 34, 413–430(2011) [31] BORGMEYER, K., QUINTANILLA, R., and RACKE, R. Phase-lag heat conduction: decay rates for limit problems and well-posedness. Journal of Evolution Equations, 14, 863–884(2014) [32] CHIRIŢA, S., D’APICE, C., and ZAMPOLI, V. The time differential three-phase-lag heat conduction model: thermodynamic compatibility and continuous dependence. International Journal of Heat and Mass Transfer, 102, 226–232(2016) [33] FABRIZIO, M. and LAZZARI, B. Stability and second law of thermodynamics in dual-phase-lag heat conduction. International Journal of Heat and Mass Transfer, 74, 484–489(2014) [34] QUINTANILLA, R. and RACKE, R. A note on stability in dual-phase-lag heat conduction. International Journal of Heat and Mass Transfer, 49, 1209–1213(2006) [35] QUINTANILLA, R. and RACKE. R. A note on stability in three-phase-lag heat conduction. International Journal of Heat and Mass Transfer, 51, 24–29(2008) [36] DELL’ORO, F. and PATA, V. A hierarchy of heat conduction laws. Discrete of Continuous Dynamical Systems Series S, 16, 2613–2635(2023) [37] FERNÁNDEZ, J. R. and QUINTANILLA, R. Uniqueness for a high order ill posed problem. Proceedings of the Royal Society of Edinburgh, 153, 1425–1438(2023) [38] MAGAÑA, A. and QUINTANILLA, R. On the existence and uniqueness in phase-lag thermoe-lasticity. Meccanica, 53, 125–134(2018) [39] QUINTANILLA, R. and RACKE. R. Spatial behavior in phase-lag heat conduction. Differential and Integral Equations, 28, 291–308(2015) [40] AMES, B. and STRAUGHAN, B. Non-standard and improperly posed problems. Mathematics in Science and Engineering, 194, Springer, Berlin (1997) [41] FLAVIN, J. N. and RIONERO, S. Qualitative Estimates for Partial Differential Equations: an Introduction, CRC Press, Boca Raton (1995) [42] ZAMPOLI, V. Uniqueness theorems about high-order time differential thermoelastic models. Ricerche di Matematica, 67, 929–950(2018) [43] GOLDSTEIN, J. A. Semigroups of linear operators and applications. Oxford Mathematical Monographs, Oxford University Press, Oxford (1985) |