Articles

Theoretical and experimental investigations on an X-shaped vibration isolator with active controlled variable stiffness

Expand
  • 1 College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China
    2 Jacobs School of Engineering, University of California San Diego, San Diego CA 92122, U. S. A.
    3 Key Laboratory of Vibration and Control of Aero-Propulsion System, Ministry of Education, Northeastern University, Shenyang 110819, China
Xuyuan SONG, E-mail: songxuyuan@163.com

Received date: 2024-03-04

  Online published: 2024-07-31

Supported by

the National Natural Science Foundation of China(12022213);the National Natural Science Foundation of China(12002329);the National Natural Science Foundation of China(U23A2066);the National Natural Science Foundation of China(12272240);the National Natural Science Foundation of China(12002217);Project supported by the National Natural Science Foundation of China (Nos. 12022213, 12002329, U23A2066, 12272240, and 12002217)

Copyright

Editorial Department of Applied Mathematics and Mechanics (English Edition), 2024,

Abstract

A novel X-shaped variable stiffness vibration isolator (X-VSVI) is proposed. The Runge-Kutta method, harmonic balance method, and wavelet transform spectra are introduced to evaluate the performance of the X-VSVI under various excitations. The layer number, the installation angle of the X-shaped structure, the stiffness, and the active control parameters are systematically analyzed. In addition, a prototype of the X-VSVI is manufactured, and vibration tests are carried out. The results show that the proposed X-VSVI has a superior adaptability to that of a traditional X-shaped mechanism, and shows excellent vibration isolation performance in response to different amplitudes and forms of excitations. Moreover, the vibration isolation efficiency of the device can be improved by appropriate adjustment of parameters.

Cite this article

Zeyu CHAI, J. T. HAN, Xuyuan SONG, Jian ZANG, Yewei ZHANG, Zhen ZHANG . Theoretical and experimental investigations on an X-shaped vibration isolator with active controlled variable stiffness[J]. Applied Mathematics and Mechanics, 2024 , 45(8) : 1371 -1386 . DOI: 10.1007/s10483-024-3135-6

References

1 FEI, H., SONG, E. Z., MA, X. Z., and JIANG, D. W. Research on whole-spacecraft vibration isolation based on predictive control. Procedia Engineering, 16, 467- 476 (2011)
2 ZHANG, Y. W., FANG, B., and CHEN, Y. Vibration isolation performance evaluation of the discrete whole-spacecraft vibration isolation platform for flexible spacecraft. Meccanica, 47, 1185- 1195 (2012)
3 LIU, L. K., and ZHENG, G. T. Parameter analysis of PAF for whole-spacecraft vibration isolation. Aerospace Science and Technology, 11, 464- 472 (2007)
4 SMITH, S. D., SMITH, J. A., and BOWDEN, D. R. Transmission characteristics of suspension seats in multi-axis vibration environments. International Journal of Industrial Ergonomics, 38, 434- 446 (2008)
5 XU, K. F., ZHANG, Y. W., ZHU, Y. P., ZANG, J., and CHEN, L. Q. Dynamics analysis of active variable stiffness vibration isolator for whole-spacecraft systems based on nonlinear output frequency response functions. Acta Mechanica Solida Sinica, 33 (6), 731- 743 (2020)
6 LI, L., WANG, L., YUAN, L., ZHENG, R., WU, Y. P., SUI, J., and ZHONG, J. Micro-vibration suppression methods and key technologies for high-precision space optical instruments. Acta Astronautica, 180, 417- 428 (2021)
7 CHEN, S. Y., YANG, Z. H., YING, M. X., ZHENG, Y. W., LIU, Y. J., and PAN, Z. W. Parallel load-bearing and damping system design and test for satellite vibration suppression. Applied Sciences, 10, 1548 (2020)
8 TANG, J., CAO, D. Q., REN, F., and LI, H. B. Design and experimental study of a VCM-based whole-spacecraft vibration isolation system. Journal of Aerospace Engineering, 31 (5), 04018045 (2018)
9 ZHANG, F., XU, M. L., SHAO, S. B., and XIE, S. L. A new high-static-low-dynamic stiffness vibration isolator based on magnetic negative stiffness mechanism employing variable reluctance stress. Journal of Sound and Vibration, 476, 115322 (2020)
10 WU, J. L., ZENG, L. Z., HAN, B., ZHOU, Y. F., LUO, X., LI, X. Q., and CHEN, X. W. Analysis and design of a novel arrayed magnetic spring with high negative stiffness for low-frequency vibration isolation. International Journal of Mechanical Sciences, 216, 106980 (2022)
11 LU, Z. Q., BRENNAN, M. J., YANG, T. J., LI, X. H., and LIU, Z. G. An investigation of a two-stage nonlinear vibration isolation system. Journal of Sound and Vibration, 332 (6), 1456- 1464 (2013)
12 LU, Z. Q., CHEN, L. Q., BRENNAN, M. J., LI, J. M., and DING, H. The characteristics of vibration isolation system with damping and stiffness geometrically nonlinear. Journal of Physics: Conference Series, 744 (1), 012115 (2016)
13 LU, Z. Q., BRENNAN, M. J., DING, H., and CHEN, L. Q. High-static-low-dynamic-stiffness vibration isolation enhanced by damping nonlinearity. Science China Technological Sciences, 62 (7), 1103- 1110 (2019)
14 GATTU, G. Statics and dynamics of a nonlinear oscillator with quasi-zero stiffness behaviour for large deflections. Communications in Nonlinear Science and Numerical Simulation, 83, 105143 (2020)
15 ZHAO, F., JI, J. C., LUO, Q. T., CAO, S. Q., CHEN, L. M., and DU, W. L. An improved quasi-zero stiffness isolator with two pairs of oblique springs to increase isolation frequency band. Nonlinear Dynamics, 104 (1), 349- 365 (2021)
16 YANG, K., TONG, W. H., LIN, L. Q., YURCHENKO, D., and WANG, J. L. Active vibration isolation performance of the bistable nonlinear electromagnetic actuator with the elastic boundary. Journal of Sound and Vibration, 52, 116588 (2022)
17 WANG, A. X., WANG, S. Q., XIA, H. W., MA, G. C., ZHANG, L., and LIU, W. Adaptive neural control of microgravity active vibration isolation system subject to output constraint and unexpected disturbance. Acta Astronautica, 213, 168- 176 (2023)
18 QIAN, Y. C., XIE, Y., JIA, J. J., and ZHANG, L. Development of active microvibration isolation system for precision space payload. Applied Sciences, 12 (9), 4548 (2022)
19 XIE, X., HE, P. T., WU, D., and ZHANG, Z. Y. Ultra-low frequency active vibration isolation in high precision equipment with electromagnetic suspension: analysis and experiment. Precision Engineering, 84, 91- 101 (2023)
20 BIAN, J., and JING, X. J. Nonlinear passive damping of the X-shaped structure. Procedia Engineering, 199, 1701- 1706 (2017)
21 JING, X. J. The X-structure/mechanism approach to beneficial nonlinear design in engineering. Applied Mathematics and Mechanics (English Edition), 43 (7), 979- 1000 (2022)
22 FENG, X., JING, X. J., and GUO, Y. Q. Vibration isolation with passive linkage mechanisms. Nonlinear Dynamics, 106 (3), 1891- 1927 (2021)
23 YAN, G., QI, W. H., SHI, J. W., YAN, H., ZOU, H. X., ZHAO, L. C., WU, Z. Y., FANG, X. Y., LI, X. Y., and ZHANG, W. M. Bionic paw-inspired structure for vibration isolation with novel nonlinear compensation mechanism. Journal of Sound and Vibration, 525, 116799 (2022)
24 ZENG, R., WEN, G. L., ZHOU, J. X., and ZHAO, G. Limb-inspired bionic quasi-zero stiffness vibration isolator. Acta Mechanica Sinica, 37 (7), 1152- 1167 (2021)
25 YAN, G., ZOU, H. X., WANG, S., ZHAO, L. C., WU, Z. Y., and ZHANG, W. M. Bio-inspired toe-like structure for low-frequency vibration isolation. Mechanical Systems and Signal Processing, 162, 108010 (2022)
26 JIN, G. X., WANG, Z. H., and YANG, T. Z. Cascaded quasi-zero stiffness nonlinear low-frequency vibration isolator inspired by human spine. Applied Mathematics and Mechanics (English Edition), 43 (6), 813- 824 (2022)
27 WU, Z. J., JING, X. J., BIAN, J., LI, F. M., and ALLEN, R. Vibration isolation by exploring bio-inspired structural nonlinearity. Bioinspiration and Biomimetics, 10 (5), 056015 (2015)
28 BIAN, J., and JING, X. J. Analysis and design of a novel and compact X-structured vibration isolation mount (X-mount) with wider quasi-zero-stiffness range. Nonlinear Dynamics, 101 (4), 2195- 2222 (2020)
29 ZHOU, S. H., LIU, Y. L., JIANG, Z. Y., and REN, Z. H. Nonlinear dynamic behavior of a bio-inspired embedded X-shaped vibration isolation system. Nonlinear Dynamics, 110 (1), 153- 175 (2022)
30 SONG, Y., ZHANG, C., LI, Z. L., LI, Y., LIAN, J. Y., SHI, Q. L., and YAN, B. Study on dynamic characteristics of bio-inspired vibration isolation platform. Journal of Vibration and Control, 28, 1470- 1485 (2022)
31 CHAI, Y. Y., JING, X. J., and CHAO, X. International journal of mechanical sciences X-shaped mechanism based enhanced tunable QZS property for passive vibration isolation. International Journal of Mechanical Sciences, 218, 107077 (2022)
32 JING, X. J., ZHANG, L. L., FENG, X., SUN, B., and LI, Q. K. A novel bio-inspired anti-vibration structure for operating hand-held jackhammers. Mechanical Systems and Signal Processing, 118, 317- 339 (2019)
33 DAI, H. H., JING, X. J., WANG, Y., YUE, X. K., and YUAN, J. P. Post-capture vibration suppression of spacecraft via a bio-inspired isolation system. Mechanical Systems and Signal Processing, 105, 214- 240 (2018)
34 JING, X. J., ZHANG, L. L., JIANG, G. Q., FENG, X., GUO, Y. Q., and XU, Z. D. Critical factors in designing a class of x-shaped structures for vibration isolation. Engineering Structures, 199, 109659 (2019)
35 HAN, C., LIU, X. G., WU, M. Y., and LIANG, W. L. A new approach to achieve variable negative stiffness by using an electromagnetic asymmetric tooth structure. Shock and Vibration, 2018, 7476387 (2018)
36 HU, Z., WANG, X., YAO, H. X., WANG, G. Y., and ZHENG, G. T. Theoretical analysis and experimental identification of a vibration isolator with widely-variable stiffness. Journal of Vibration and Acoustics, 140 (5), 051014 (2018)
37 LI, R. P., DU, C. B., GUO, F., YU, G. J., and LIN, X. G. Performance of variable negative stiffness MRE vibration isolation system. Advances in Materials Science and Engineering, 2015, 837657 (2015)
38 CHEN, R. Z., LI, X. P., YANG, Z. M., XU, J. C., and YANG, H. X. A variable positive-negative stiffness joint with low frequency vibration isolation performance. Measurement: Journal of the International Measurement Confederation, 185, 110046 (2021)
39 WU, T. H., and LAN, C. C. A wide-range variable stiffness mechanism for semi-active vibration systems. Journal of Sound and Vibration, 363, 18- 32 (2016)
40 ZHAO, J. L., SUN, Y., DING, J. H., SUN, Y., WANG, M., YUAN, S. J., PU, H. Y., LUO, J., XIE, Z. J., QIN, Y., WEI, J., XIE, S. R., and PENG, Y. Shock isolation capability of an electromagnetic variable stiffness isolator with bidirectional stiffness regulation. IEEE/ASME Transactions on Mechatronics, 26 (4), 2038- 2047 (2021)
41 CHURCHILL, C. B., SHAHAN, D. W., SMITH, S. P., KEEFE, A. C., and MCKNIGHT, G. P. Materials engineering: dynamically variable negative stiffness structures. Science Advances, 2 (2), e1500778 (2016)
42 ZHANG, Y. W., LI, Z., XU, K. F., and ZANG, J. A lattice sandwich structure with the active variable stiffness device under aerodynamical condition. Aerospace Science and Technology, 116, 106849 (2021)
43 ZHANG, Z., LU, Z. Q., DING, H., and CHEN, L. Q. An inertial nonlinear energy sink. Journal of Sound and Vibration, 450, 199- 213 (2019)
44 ZANG, J., YUAN, T. C., LU, Z. Q., ZHANG, Y. W., DING, H., and CHEN, L. Q. A lever-type nonlinear energy sink. Journal of Sound and Vibration, 437, 119- 134 (2018)
Outlines

/

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals