Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (8): 1371-1386.doi: https://doi.org/10.1007/s10483-024-3135-6
• Articles • Previous Articles Next Articles
Zeyu CHAI1, J. T. HAN2, Xuyuan SONG1,3,*(), Jian ZANG1, Yewei ZHANG1, Zhen ZHANG1
Received:
2024-03-04
Online:
2024-08-03
Published:
2024-07-31
Contact:
Xuyuan SONG
E-mail:songxuyuan@163.com
Supported by:
2010 MSC Number:
Zeyu CHAI, J. T. HAN, Xuyuan SONG, Jian ZANG, Yewei ZHANG, Zhen ZHANG. Theoretical and experimental investigations on an X-shaped vibration isolator with active controlled variable stiffness. Applied Mathematics and Mechanics (English Edition), 2024, 45(8): 1371-1386.
1 | FEI, H., SONG, E. Z., MA, X. Z., and JIANG, D. W. Research on whole-spacecraft vibration isolation based on predictive control. Procedia Engineering, 16, 467- 476 (2011) |
2 | ZHANG, Y. W., FANG, B., and CHEN, Y. Vibration isolation performance evaluation of the discrete whole-spacecraft vibration isolation platform for flexible spacecraft. Meccanica, 47, 1185- 1195 (2012) |
3 | LIU, L. K., and ZHENG, G. T. Parameter analysis of PAF for whole-spacecraft vibration isolation. Aerospace Science and Technology, 11, 464- 472 (2007) |
4 | SMITH, S. D., SMITH, J. A., and BOWDEN, D. R. Transmission characteristics of suspension seats in multi-axis vibration environments. International Journal of Industrial Ergonomics, 38, 434- 446 (2008) |
5 | XU, K. F., ZHANG, Y. W., ZHU, Y. P., ZANG, J., and CHEN, L. Q. Dynamics analysis of active variable stiffness vibration isolator for whole-spacecraft systems based on nonlinear output frequency response functions. Acta Mechanica Solida Sinica, 33 (6), 731- 743 (2020) |
6 | LI, L., WANG, L., YUAN, L., ZHENG, R., WU, Y. P., SUI, J., and ZHONG, J. Micro-vibration suppression methods and key technologies for high-precision space optical instruments. Acta Astronautica, 180, 417- 428 (2021) |
7 | CHEN, S. Y., YANG, Z. H., YING, M. X., ZHENG, Y. W., LIU, Y. J., and PAN, Z. W. Parallel load-bearing and damping system design and test for satellite vibration suppression. Applied Sciences, 10, 1548 (2020) |
8 | TANG, J., CAO, D. Q., REN, F., and LI, H. B. Design and experimental study of a VCM-based whole-spacecraft vibration isolation system. Journal of Aerospace Engineering, 31 (5), 04018045 (2018) |
9 | ZHANG, F., XU, M. L., SHAO, S. B., and XIE, S. L. A new high-static-low-dynamic stiffness vibration isolator based on magnetic negative stiffness mechanism employing variable reluctance stress. Journal of Sound and Vibration, 476, 115322 (2020) |
10 | WU, J. L., ZENG, L. Z., HAN, B., ZHOU, Y. F., LUO, X., LI, X. Q., and CHEN, X. W. Analysis and design of a novel arrayed magnetic spring with high negative stiffness for low-frequency vibration isolation. International Journal of Mechanical Sciences, 216, 106980 (2022) |
11 | LU, Z. Q., BRENNAN, M. J., YANG, T. J., LI, X. H., and LIU, Z. G. An investigation of a two-stage nonlinear vibration isolation system. Journal of Sound and Vibration, 332 (6), 1456- 1464 (2013) |
12 | LU, Z. Q., CHEN, L. Q., BRENNAN, M. J., LI, J. M., and DING, H. The characteristics of vibration isolation system with damping and stiffness geometrically nonlinear. Journal of Physics: Conference Series, 744 (1), 012115 (2016) |
13 | LU, Z. Q., BRENNAN, M. J., DING, H., and CHEN, L. Q. High-static-low-dynamic-stiffness vibration isolation enhanced by damping nonlinearity. Science China Technological Sciences, 62 (7), 1103- 1110 (2019) |
14 | GATTU, G. Statics and dynamics of a nonlinear oscillator with quasi-zero stiffness behaviour for large deflections. Communications in Nonlinear Science and Numerical Simulation, 83, 105143 (2020) |
15 | ZHAO, F., JI, J. C., LUO, Q. T., CAO, S. Q., CHEN, L. M., and DU, W. L. An improved quasi-zero stiffness isolator with two pairs of oblique springs to increase isolation frequency band. Nonlinear Dynamics, 104 (1), 349- 365 (2021) |
16 | YANG, K., TONG, W. H., LIN, L. Q., YURCHENKO, D., and WANG, J. L. Active vibration isolation performance of the bistable nonlinear electromagnetic actuator with the elastic boundary. Journal of Sound and Vibration, 52, 116588 (2022) |
17 | WANG, A. X., WANG, S. Q., XIA, H. W., MA, G. C., ZHANG, L., and LIU, W. Adaptive neural control of microgravity active vibration isolation system subject to output constraint and unexpected disturbance. Acta Astronautica, 213, 168- 176 (2023) |
18 | QIAN, Y. C., XIE, Y., JIA, J. J., and ZHANG, L. Development of active microvibration isolation system for precision space payload. Applied Sciences, 12 (9), 4548 (2022) |
19 | XIE, X., HE, P. T., WU, D., and ZHANG, Z. Y. Ultra-low frequency active vibration isolation in high precision equipment with electromagnetic suspension: analysis and experiment. Precision Engineering, 84, 91- 101 (2023) |
20 | BIAN, J., and JING, X. J. Nonlinear passive damping of the X-shaped structure. Procedia Engineering, 199, 1701- 1706 (2017) |
21 |
JING, X. J. The X-structure/mechanism approach to beneficial nonlinear design in engineering. Applied Mathematics and Mechanics (English Edition), 43 (7), 979- 1000 (2022)
doi: 10.1007/s10483-022-2862-6 |
22 | FENG, X., JING, X. J., and GUO, Y. Q. Vibration isolation with passive linkage mechanisms. Nonlinear Dynamics, 106 (3), 1891- 1927 (2021) |
23 | YAN, G., QI, W. H., SHI, J. W., YAN, H., ZOU, H. X., ZHAO, L. C., WU, Z. Y., FANG, X. Y., LI, X. Y., and ZHANG, W. M. Bionic paw-inspired structure for vibration isolation with novel nonlinear compensation mechanism. Journal of Sound and Vibration, 525, 116799 (2022) |
24 | ZENG, R., WEN, G. L., ZHOU, J. X., and ZHAO, G. Limb-inspired bionic quasi-zero stiffness vibration isolator. Acta Mechanica Sinica, 37 (7), 1152- 1167 (2021) |
25 | YAN, G., ZOU, H. X., WANG, S., ZHAO, L. C., WU, Z. Y., and ZHANG, W. M. Bio-inspired toe-like structure for low-frequency vibration isolation. Mechanical Systems and Signal Processing, 162, 108010 (2022) |
26 |
JIN, G. X., WANG, Z. H., and YANG, T. Z. Cascaded quasi-zero stiffness nonlinear low-frequency vibration isolator inspired by human spine. Applied Mathematics and Mechanics (English Edition), 43 (6), 813- 824 (2022)
doi: 10.1007/s10483-022-2852-5 |
27 | WU, Z. J., JING, X. J., BIAN, J., LI, F. M., and ALLEN, R. Vibration isolation by exploring bio-inspired structural nonlinearity. Bioinspiration and Biomimetics, 10 (5), 056015 (2015) |
28 | BIAN, J., and JING, X. J. Analysis and design of a novel and compact X-structured vibration isolation mount (X-mount) with wider quasi-zero-stiffness range. Nonlinear Dynamics, 101 (4), 2195- 2222 (2020) |
29 | ZHOU, S. H., LIU, Y. L., JIANG, Z. Y., and REN, Z. H. Nonlinear dynamic behavior of a bio-inspired embedded X-shaped vibration isolation system. Nonlinear Dynamics, 110 (1), 153- 175 (2022) |
30 | SONG, Y., ZHANG, C., LI, Z. L., LI, Y., LIAN, J. Y., SHI, Q. L., and YAN, B. Study on dynamic characteristics of bio-inspired vibration isolation platform. Journal of Vibration and Control, 28, 1470- 1485 (2022) |
31 | CHAI, Y. Y., JING, X. J., and CHAO, X. International journal of mechanical sciences X-shaped mechanism based enhanced tunable QZS property for passive vibration isolation. International Journal of Mechanical Sciences, 218, 107077 (2022) |
32 | JING, X. J., ZHANG, L. L., FENG, X., SUN, B., and LI, Q. K. A novel bio-inspired anti-vibration structure for operating hand-held jackhammers. Mechanical Systems and Signal Processing, 118, 317- 339 (2019) |
33 | DAI, H. H., JING, X. J., WANG, Y., YUE, X. K., and YUAN, J. P. Post-capture vibration suppression of spacecraft via a bio-inspired isolation system. Mechanical Systems and Signal Processing, 105, 214- 240 (2018) |
34 | JING, X. J., ZHANG, L. L., JIANG, G. Q., FENG, X., GUO, Y. Q., and XU, Z. D. Critical factors in designing a class of x-shaped structures for vibration isolation. Engineering Structures, 199, 109659 (2019) |
35 | HAN, C., LIU, X. G., WU, M. Y., and LIANG, W. L. A new approach to achieve variable negative stiffness by using an electromagnetic asymmetric tooth structure. Shock and Vibration, 2018, 7476387 (2018) |
36 | HU, Z., WANG, X., YAO, H. X., WANG, G. Y., and ZHENG, G. T. Theoretical analysis and experimental identification of a vibration isolator with widely-variable stiffness. Journal of Vibration and Acoustics, 140 (5), 051014 (2018) |
37 | LI, R. P., DU, C. B., GUO, F., YU, G. J., and LIN, X. G. Performance of variable negative stiffness MRE vibration isolation system. Advances in Materials Science and Engineering, 2015, 837657 (2015) |
38 | CHEN, R. Z., LI, X. P., YANG, Z. M., XU, J. C., and YANG, H. X. A variable positive-negative stiffness joint with low frequency vibration isolation performance. Measurement: Journal of the International Measurement Confederation, 185, 110046 (2021) |
39 | WU, T. H., and LAN, C. C. A wide-range variable stiffness mechanism for semi-active vibration systems. Journal of Sound and Vibration, 363, 18- 32 (2016) |
40 | ZHAO, J. L., SUN, Y., DING, J. H., SUN, Y., WANG, M., YUAN, S. J., PU, H. Y., LUO, J., XIE, Z. J., QIN, Y., WEI, J., XIE, S. R., and PENG, Y. Shock isolation capability of an electromagnetic variable stiffness isolator with bidirectional stiffness regulation. IEEE/ASME Transactions on Mechatronics, 26 (4), 2038- 2047 (2021) |
41 | CHURCHILL, C. B., SHAHAN, D. W., SMITH, S. P., KEEFE, A. C., and MCKNIGHT, G. P. Materials engineering: dynamically variable negative stiffness structures. Science Advances, 2 (2), e1500778 (2016) |
42 | ZHANG, Y. W., LI, Z., XU, K. F., and ZANG, J. A lattice sandwich structure with the active variable stiffness device under aerodynamical condition. Aerospace Science and Technology, 116, 106849 (2021) |
43 | ZHANG, Z., LU, Z. Q., DING, H., and CHEN, L. Q. An inertial nonlinear energy sink. Journal of Sound and Vibration, 450, 199- 213 (2019) |
44 | ZANG, J., YUAN, T. C., LU, Z. Q., ZHANG, Y. W., DING, H., and CHEN, L. Q. A lever-type nonlinear energy sink. Journal of Sound and Vibration, 437, 119- 134 (2018) |
[1] | Runqing CAO, Zilong GUO, Wei CHEN, Huliang DAI, Lin WANG. Nonlinear dynamics of a circular curved cantilevered pipe conveying pulsating fluid based on the geometrically exact model [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 261-276. |
[2] | Shihua ZHOU, Dongsheng ZHANG, Bowen HOU, Zhaohui REN. Vibration isolation performance analysis of a bilateral supported bio-inspired anti-vibration control system [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(5): 759-772. |
[3] | Duquan ZUO, B. SAFAEI, S. SAHMANI, Guoling MA. Nonlinear free vibrations of porous composite microplates incorporating various microstructural-dependent strain gradient tensors [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(6): 825-844. |
[4] | Yaode YIN, Demin ZHAO, Jianlin LIU, Zengyao XU. Nonlinear dynamic analysis of dielectric elastomer membrane with electrostriction [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(6): 793-812. |
[5] | Lei LI, Hanbiao LIU, Jianxin HAN, Wenming ZHANG. Nonlinear modal coupling in a T-shaped piezoelectric resonator induced by stiffness hardening effect [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(6): 777-792. |
[6] | Lei XIA, Jiaojiao SUN, Zuguang YING, Ronghua HUAN, Weiqiu ZHU. Dynamics and response reshaping of nonlinear predator-prey system undergoing random abrupt disturbances [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(8): 1123-1134. |
[7] | Kun ZHOU, Qiao NI, Wei CHEN, Huliang DAI, Zerui PENG, Lin WANG. New insight into the stability and dynamics of fluid-conveying supported pipes with small geometric imperfections [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(5): 703-720. |
[8] | A. SARAFRAZ, S. SAHMANI, M. M. AGHDAM. Nonlinear primary resonance analysis of nanoshells including vibrational mode interactions based on the surface elasticity theory [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(2): 233-260. |
[9] | Yunyue CONG, Houjun KANG, Tieding GUO. Analysis of in-plane 1:1:1 internal resonance of a double cable-stayed shallow arch model with cables' external excitations [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(7): 977-1000. |
[10] | Houjun KANG, Tieding GUO, Weidong ZHU, Junyi SU, Bingyu ZHAO. Dynamical modeling and non-planar coupled behavior of inclined CFRP cables under simultaneous internal and external resonances [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(5): 649-678. |
[11] | Nan ZHANG, Bin CHENG, Hexi BAOYIN. A new physical model on the capillary phenomenon of granular particles [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(1): 127-138. |
[12] | Kuan LU, Yushu CHEN, Lei HOU. Bifurcation characteristics analysis of a class of nonlinear dynamical systems based on singularity theory [J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(9): 1233-1246. |
[13] | Minghui FU, Kelang LU, Weihua LI, S. V. SHESHENIN. New way to construct high order Hamiltonian variational integrators [J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(8): 1041-1052. |
[14] | Bensong YU, Dongping JIN, Hao WEN. Nonlinear dynamics of flexible tethered satellite system subject to space environment [J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(4): 485-500. |
[15] |
Qiaoyun YAN, Hu DING, Liqun CHEN.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||