[1] Chen, Y. S. and Andrew Y. T. L. Bifurcation and Chaos in Engineering, Springer-Verlag, London (1998)
[2] Lu, K., Jin, Y. L., Chen, Y. S., Cao, Q. J., and Zhang, Z. Y. Stability analysis of reduced rotor pedestal looseness fault model. Nonlinear Dynamics, 82, 1611-1622(2015)
[3] Arnold, V. I. Singular Theory (London Mathematical Society Lecture Notes Series), Cambridge University Press, Cambridge (1981)
[4] Golubistky, M. and Schaeffer, D. G. Singularities and Groups in Bifurcation Theory I, SpringVerlag, New York (1985)
[5] Golubistky, M. and Schaeffer, D. G. Singularities and Groups in Bifurcation Theory/, SpringVerlag, New York (1988)
[6] Keyfitz, B. L. Classification of one state variable bifurcation problem up to codimension seven. Dynamical Systems, 1, 1-42(1986)
[7] Golubitsky, M. and Guillemin, V. Stable Mapping and Their Singularities, Spring-Verlag, New York (1973)
[8] Martinet, J. Singularities of Smooth Functions and Maps, Cambridge University Press, London (1982)
[9] Futer, J. E., Sitta, A. M., and Stewart, I. Singularity theory and equivariant bifurcation problems with parameter symmetry. Mathematical Proceedings of the Cambridge Philosophical Society, 120, 547-578(1996)
[10] Lari-Lavassani, A. and Lu, Y. C. Equivariant multi-parameter bifurcation via singularity theory. Journal of Dynamics and Differential Equations, 5, 189-218(1993)
[11] Uppal, A., Ray, W. H., and Poore, A. B. The classification of the dynamic behavior of continuous stirred tank reactors——influence of reactor residence time. Chemical Engineering Science, 31, 205-214(1976)
[12] Jin, J. D. and Matsuzaki, Y. Bifurcation analysis of double pendulum with a follower force. Journal of Sound and Vibration, 154, 191-204(1992)
[13] Jin, J. D. and Zou, G. S. Bifurcations and chaotic motions in the autonomous system of a restrained pipe conveying fluid. Journal of Sound and Vibration, 260, 783-805(2003)
[14] Bogoliubov, N. N. and Mitropolsky, Y. A. Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, New York (1961)
[15] Nayfeh, A. H. and Mook, D. T. Nonlinear Oscillations, John Wiley and Sons, New York (1979)
[16] Chen, Y. S. and Langford, W. F. The subharmonic bifurcation solution of nonlinear Mathieu's equation and Euler dynamically buckling problem. Acta Mechanica Sinica, 4, 350-362(1988)
[17] Langford, W. F. and Zhan, K. Dynamics of strong 1:1 resonance in vortex-induced vibration. Fundamental Aspects of Fluid-Structure Interactions, The American Society of Mechanical Engineers, Fairfield, NJ (1992)
[18] Golubisky, M. and Langford, W. F. Classification and unfoldings of degenerate Hopf bifurcations. Journal of Differential Equations, 41, 375-415(1981)
[19] Murdock, J. Asymptotic unfoldings of dynamical systems by normalizing beyond the normal form. Journal of Differential Equations, 143, 151-190(1998)
[20] Armbruster, D. and Kredel, H. Constructing universal unfoldings using Gröbner bases. Journal of Symbolic Computation, 2, 383-388(1986)
[21] Chen, F. Q., Liang, J. S., Chen, Y. S., Liu, X. J., and Ma, H. C. Bifurcation analysis of an arch structure with parametric and forced exciation. Mechanics Research Communications, 34, 213-221(2007)
[22] Zhang. W., Wang, F. X., and Zu, J. W. Local bifurcations and codimension-3 degenerate bifurcations of a quintic nonlinear beam under parametric excitation. Chaos, Solitons and Fractals, 24, 977-998(2005)
[23] Jones, M. Universal unfoldings of group invariant equations which model second and third harmonic resonant capillary-gravity waves. Computers and Mathematics with Applications, 32, 59-89(1996)
[24] Zhou, T. S., Chen, G. R., and Tang, Y. A. Universal unfolding of the Lorenz system. Chaos, Solitons and Fractals, 20, 979-993(2004)
[25] Lu, K., Chen, Y. S., Cao, Q. J., Hou L., and Jin, Y. L. Bifurcation analysis of reduced rotor model based on nonlinear transient POD method. International Journal of Nonlinear Mechanics, 89, 83-92(2017)
[26] Qin, Z. H. Singularity Method for Nonlinear Dynamical Analysis of Systems with Two Parameters and Its Application in Engineering (in Chinese), Ph. D. dissertation, Harbin Institute of Technology (2011)
[27] Hou, L. and Chen, Y. S. Bifurcation analysis of an aero-engine's rotor system under constant maneuver load. Applied Mathematics and Mechanics (English Edition), 36, 1417-1426(2015) DOI 10.1007/s10483-015-1992-7
[28] Qin, Z. H. and Chen, Y. S. Singular analysis of bifurcation systems with two parameters. Acta Mechanica Sinica, 26, 501-507(2010)
[29] Li, J. and Chen, Y. S. Transition sets of bifurcations of dynamical systems with two state variables with constraints. Applied Mathematics and Mechanics (English Edition), 33, 139-154(2012) DOI 10.1007/s10483-012-1539-7
[30] Zhang, H. B., Chen, Y. S., and Li, J. Bifurcation on the synchronous full annular rub of a rigidrotor elastic-support system. Applied Mathematics and Mechanics (English Edition), 33, 812-827(2012) DOI 10.1007/s10483-012-1591-7
[31] Seyranian, A. P. and Mailybaev, A. A. Multi-Parameter Stability Theory with Mechanical Application, Word Scientific, Singapore (2003) |