[1] FU, H. R., NAN, K. W., BAI, W. B., HUANG, W., BAI, K., LU, L. Y., ZHOU, C. Q., LIU, Y. P., LIU, F., WANG, J. T., HAN, M. D., YAN, Z., LUAN, H. W., ZHANG, Y. J., ZHANG, Y. T., ZHAO, J. N., CHENG, X., LI, M. Y., LEE, J. W., LIU, Y., FANG, D. N., LI, X. L., HUANG, Y. G., ZHANG, Y. H., and ROGERS, J. A. Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics. Nature Materials, 17(3), 268–276(2018) [2] LI, D. D., LAI, W. Y., ZHANG, Y. Z., and HUANG, W. Printable transparent conductive films for flexible electronics. Advanced Materials, 30(10), 1704738(2018) [3] YU, Y., NYEIN, H. Y. Y., GAO, W., and JAVEY, A. Flexible electrochemical bioelectronics: the rise of in situ bioanalysis. Advanced Materials, 32(15), e1902083(2020) [4] LU, Z. X., GUO, L., and ZHAO, H. Y. Mechanics of nonbuckling interconnects with prestrain for stretchable electronics. Applied Mathematics and Mechanics (English Edition), 42(5), 689–702(2021) https://doi.org/10.1007/s10483-021-2715-7 [5] RAUT, H. K., GANESH, V. A., NAIR, A. S., and RAMAKRISHNA, S. Anti-reflective coatings: a critical, in-depth review. Energy & Environmental Science, 4(10), 3779–3804(2011) [6] HARUN, W. S. W., ASRI, R. I. M., ALIAS, J., ZULKIFLI, F. H., KADIRGAMA, K., GHANI, S. A. C., and SHARIFFUDDIN, J. H. M. A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials. Ceramics International, 44(2), 1250–1268(2018) [7] HORNBERGER, H., VIRTANEN, S., and BOCCACCINI, A. R. Biomedical coatings on magnesium alloys: a review. Acta Biomaterialia, 8(7), 2442–2455(2012) [8] LIU, Y. J. and YIN, H. M. Elastic thermal stresses in a hollow circular overlay/substrate system. Mechanics Research Communications, 55, 10–17(2014) [9] THOULESS, M. D., LI, Z., DOUVILLE, N. J., and TAKAYAMA, S. Periodic cracking of films supported on compliant substrates. Journal of the Mechanics and Physics of Solids, 59(9), 1927– 1937(2011) [10] LI, J., AN, Y., HUANG, R., JIANG, H., and XIE, T. Unique aspects of a shape memory polymer as the substrate for surface wrinkling. ACS Applied Materials & Interfaces, 4(2), 598–603(2012) [11] COTTERELL, B. and CHEN, Z. Buckling and cracking of thin films on compliant substrates under compression. International Journal of Fracture, 104(2), 169–179(2000) [12] CHEN, Z. B., KIM, Y. Y., and KRISHNASWAMY, S. Anisotropic wrinkle formation on shape memory polymer substrates. Journal of Applied Physics, 112(12), 124319(2012) [13] GOEHRING, L. Evolving fracture patterns: columnar joints, mud cracks and polygonal terrain. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 371(2004), 20120353(2013) [14] NANDAKISHORE, P. and GOEHRING, L. Crack patterns over uneven substrates. Soft Matter, 12(8), 2253–2263(2016) [15] YIN, H. M., PAULINO, G. H., and BUTTLAR, W. G. An explicit elastic solution for a brittle film with periodic cracks. International Journal of Fracture, 153(1), 39–52(2008) [16] ALACA, B. E., OZCAN, C., and ANLAS, G. Deterministic assembly of channeling cracks as a tool for nanofabrication. Nanotechnology, 21(5), 055301(2010) [17] HUANG, Y., YUAN, J. H., ZHANG, Y. C., and FENG, X. Interfacial delamination of inorganic films on viscoelastic substrates. Journal of Applied Mechanics, 83(10), 101005(2016) [18] NAZIR, M. H. and KHAN, Z. A. A review of theoretical analysis techniques for cracking and corrosive degradation of film-substrate systems. Engineering Failure Analysis, 72, 80–113(2017) [19] CHAI, H. and FOX, J. On delamination growth from channel cracks in thin-film coatings. International Journal of Solids and Structures, 49(22), 3142–3147(2012) [20] BALDELLI, A. A. L., BABADJIAN, J. F., BOURDIN, B., HENAO, D., and MAURINI, C. A variational model for fracture and debonding of thin films under in-plane loadings. Journal of the Mechanics and Physics of Solids, 70, 320–348(2014) [21] MEN, L., YU, Y. L., HOU, Z. Y., LI, X., and WANG, Z. J. Cracking modes in layered hyperelastic structures. Journal of the Mechanics and Physics of Solids, 174, 105254(2023) [22] LI, T. and SUO, Z. Ductility of thin metal films on polymer substrates modulated by interfacial adhesion. International Journal of Solids and Structures, 44(6), 1696–1705(2007) [23] XIANG, Y., LI, T., SUO, Z. G., and VLASSAK, J. J. High ductility of a metal film adherent on a polymer substrate. Applied Physics Letters, 87(16), 161910(2005) [24] LI, J. C., DOZIER, A. K., LI, Y. C., YANG, F. Q., and CHENG, Y. T. Crack pattern formation in thin film lithium-ion battery electrodes. Journal of the Electrochemical Society, 158(6), A689(2011) [25] ZHANG, X., ZHAO, M. H., FAN, C. Y., LU, C. S., and DANG, H. Y. Three-dimensional interfacial fracture analysis of a one-dimensional hexagonal quasicrystal coating. Applied Mathematics and Mechanics (English Edition), 43(12), 1901–1920(2022) https://doi.org/10.1007/s10483-022-2942-7 [26] BEUTH, J. L. Cracking of thin bonded films in residual tension. International Journal of Solids and Structures, 29(13), 1657–1675(1992) [27] XIA, Z. C. and HUTCHINSON, J. W. Crack patterns in thin films. Journal of the Mechanics and Physics of Solids, 48(6-7), 1107–1131(2000) [28] LIU, W. D., LIU, M., and ZHANG, L. C. Oxidation-induced mechanical deterioration and hierarchical cracks in glassy carbon. Carbon, 100, 178–186(2016) [29] MALZBENDER, J., DEN TOONDER, J. M. J., BALKENENDE, A. R., and DE WITH, G. Measuring mechanical properties of coatings: a methodology applied to nano-particle-filled solgel coatings on glass. Materials Science and Engineering, 36(2-3), 47–103(2002) [30] MCGUIGAN, A. P., BRIGGS, G. A. D., BURLAKOV, V. M., YANAKA, M., and TSUKAHARA, Y. An elastic-plastic shear lag model for fracture of layered coatings. Thin Solid Films, 424(2), 219–223(2003) [31] WEI, X., NARAGHI, M., and ESPINOSA, H. D. Optimal length scales emerging from shear load transfer in natural materials: application to carbon-based nanocomposite design. ACS Nano, 6(3), 2333–2344(2012) [32] YU, Z. L., LIU, J. J., and WEI, X. D. Unraveling crack stability and strain localization in staggered composites by fracture analysis on the shear-lag model. Composites Science and Technology, 156, 262–268(2018) [33] HARVEY, C. M., WOOD, J. D., and WANG, S. Brittle interfacial cracking between two dissimilar elastic layers: part 1-analytical development. Composite Structures, 134, 1076–1086(2015) [34] HARVEY, C. M., WOOD, J. D., and WANG, S. Brittle interfacial cracking between two dissimilar elastic layers: part 2-numerical verification. Composite Structures, 134, 1087–1094(2015) [35] MENG, X. H., WANG, Z. H., VINNIKOVA, S., and WANG, S. D. Mechanics of periodic film cracking in bilayer structures under stretching. Journal of Applied Mechanics, 85(7), 071006(2018) [36] YIN, H. M. Fracture saturation and critical thickness in layered materials. International Journal of Solids and Structures, 47(7-8), 1007–1015(2010) |