[1] JAEGER, H. M., NAGEL, S. R., and BEHRINGER, R. P. Granular solid, liquids, and gases. Reviews of Modern Physics, 68, 1259-1273(1996)
[2] YANG, F., WANG, L., YIN, S., LI, Y., LIU, C., and TONG, L. Experimental study on the entrainment characteristics of ultrafine powder in a fluidized bed with vibrator and agitator. Industrial & Engineering Chemistry Research, 52, 1359-1364(2013)
[3] KANAI, K., UGAWA, A., and SANO, O. Experiment on vibration-induced pattern formation of a vertically thin granular layer. Journal of the Physical Society of Japan, 74, 1457-1463(2005)
[4] EHRICHS, E., JAEGER, H., KNIGHT, J., NAGEL, S., KARCZMAR, G., and KUPERMAN, V. Granular convection observed by magnetic resonance imaging. Science, 267, 1632-1634(1995)
[5] PAUL, B. U., FRANCISCO, M., and HARRY, L. S. Localized excitations in a vertically vibrated granular layer. nature, 382, 793-796(1996)
[6] HSIAU, S. S., WU, M. H., and CHEN, C. H. Arching phenomena in a vibrated granular bed. Powder Technology, 99, 185-193(1998)
[7] KNIGHT, J., JAEGER, H., and NAGEL, S. Vibration-induced size separation in granular media:the convection connection. Physical Review Letters, 70, 3728-3731(1993)
[8] SCHRÖTER, M., ULRICH, S., KREFT, J., SWIFT, J., and SWINNEY, H. Mechanisms in the size segregation of a binary granular mixture. Physical Review E:Statistical Nonlinear and Soft Matter Physics, 74, 011307(2006)
[9] THOMAS, N. and D'ORTONA, U. Evidence of reverse and intermediate size segregation in dry granular flows down a rough incline. Physical Review E:Statistical Nonlinear and Soft Matter Physics, 97, 022903(2018)
[10] PAK, H. K. and BEHRINGER, R. P. Surface waves in vertically vibrated granular materials. Physical Review Letters, 71, 1832-1835(1993)
[11] UGAWA, A. and SANO, O. Dispersion relation of standing waves on a vertically oscillated thin granular layer. Journal of the Physical Society of Japan, 71, 2815-2819(2002)
[12] LIU, C., WU, P., and WANG, L. Particle climbing along a vibrating tube:a vibrating tube that acts as a pump for lifting granular materials from a silo. Soft Matter, 9, 4762-4766(2013)
[13] LIU, Y. and ZHAO, J. Experimental study and analysis on the rising motion of grains in a vertically-vibrated pipe. Chinese Physics B, 24, 034502(2005)
[14] ZHANG, F. W., WANG, L., LIU, C. P., and WU, P. Climbing motion of grains in vibrating tubes with different geometries. Advanced Powder Technology, 28, 356-362(2017)
[15] LIU, C. P., ZHANG, F. W., WU, P., and WANG, L. Effect of hoisting tube shape on particle climbing. Powder Technology, 259, 137-143(2014)
[16] ZHANG, F. W., CRONIN, K., LIN, Y. H., LIU, C. P., and WANG, L. Effects of vibration parameters and pipe insertion depth on the motion of particles induced by vertical vibration. Powder Technology, 333, 421-428(2018)
[17] WIDOM, B. Capillarity and wetting phenomena:drops, bubbles, pearls, waves. Physics Today, 57, 66-67(2004)
[18] AKIYAMA, T. and SHIMOMURA, T. Investigation of wall shear stress in vibrating particle beds. Powder Technology, 66, 243-247(1991)
[19] AKIYAMA, T. and SHIMOMURA, T. Measurements of wall shear stress in particle beds when vibrations are imposed vertically along the direction of shear. Advanced Powder Technology, 4, 129-142(1993)
[20] FAN, F., PARTELI, E., and PÖSCHEL, T. Origin of granular capillarity revealed by particlebased simulations. Physical Review Letters, 118, 218001(2017)
[21] XU, Y., MUSSER, J., LI, T., PADDING, J. T., and ROGERS, W. A. Particles climbing along a vertically vibrating tube:numerical simulation using the discrete element method (DEM). Powder Technology, 320, 304-312(2017)
[22] VANEL, L., CLAUDIN, P., BOUCHAUD, J. P., CATES, M. E., CLÉMENT, E., and WITTMER, J. P. Stresses in silos:comparison between theoretical models and new experiments. Physical Review Letters, 84, 1439-1442(2000)
[23] MÜLLER, T. G., ?RECH, J., ISHIGURO, M., MUELLER, M., KRÜHLER, T., YANG, H., KIM, M. J., O'ROURKE, L., USUI, F., KISS, C., ALTIERI, B., CARRY, B., CHOI, Y. J., DELBO, M., EMERY, J. P., GREINER, J., HASEGAWA, S., HORA, J. L., KNUST, F., KURODA, D., OSIP, D., RAU, A., RIVKIN, A., SCHADY, P., THOMAS-OSIP, J., TRILLING, D., URAKAWA, S., VILENIUS, E., WEISSMAN, P., and ZEIDLER, P. Hayabusa-2 mission target asteroid 162173 ryugu (1999 JU3):searching for the object's spin-axis orientation. Astronomy & Astrophysics, 599, A103(2017) |