[1] ASPELMEYER, M., KIPPENBERG, T. J., and MARQUARDT, F. Cavity optomechanics. Reviews of Modern Physics, 86(4), 1391-1452(2014) [2] EICHENFIELD, M., CHAN, J., CAMACHO, R. M., VAHALA, K. J., and PAINTER, O. Optomechanical crystals. nature, 462(7269), 78-82(2009) [3] CRIPE, J., AGGARWAL, N., SINGH, R., LANZA, R., LIBSON, A., YAP, M. J., COLE, G. D., MCCLELLAND, D. E., MAVALVALA, N., and CORBITT, T. Radiation-pressure-mediated control of an optomechanical cavity. Physical Review A, 97(1), 013827(2018) [4] WU, M., HRYCIW, A. C., HEALEY, C., LAKE, D. P., JAYAKUMAR, H., FREEMAN, M. R., DAVIS, J. P., and BARCLAY, P. E. Dissipative and dispersive optomechanics in a nanocavity torque sensor. Physical Review X, 4(2), 021052(2014) [5] LEIJSSEN, R., LA GALA, G. R., FREISEM, L., MUHONEN, J. T., and VERHAGEN, E. Nonlinear cavity optomechanics with nanomechanical thermal fluctuations. Nature Communications, 8, 16024(2017) [6] YU, W., JIANG, W. C., LIN, Q., and LU, T. Cavity optomechanical spring sensing of single molecules. Nature Communications, 7, 12311(2016) [7] ZHANG, M., SHAH, S., CARDENAS, J., and LIPSON, M. Synchronization and phase noise reduction in micromechanical oscillator arrays coupled through light. Physical Review Letters, 115(16), 163902(2015) [8] CAI, H., DONG, B., TAO, J. F., DING, L., TSAI, J. M., LO, G. Q., LIU, A. Q., and KWONG, D. L. A nanoelectromechanical systems optical switch driven by optical gradient force. Applied Physics Letters, 102(2), 023103(2013) [9] NORTE, R. A., MOURA, J. P., and GRÖLACHER, S. Mechanical resonators for quantum otomechanics experiments at room temperature. Physical Review Letters, 116(14), 147202(2016) [10] JING, H., ÖZDEMIR, Ş. K., GENG, Z., ZHANG, J., LÜ, X. Y., PENG, B., YANG, L., and NORI, F. Optomechanically-induced transparency in parity-time-symmetric microresonators. Scientific Reports, 5, 9663(2015) [11] LIN, T., ZHANG, X., ZHOU, G., SIONG, C. F., and DENG, J. Design of an ultra-compact slotted photonic crystal nanobeam cavity for biosensing. Journal of the Optical Society of America B, 32(9), 1788-1791(2015) [12] KIM, K. H., BAHL, G., LEE, W., LIU, J., TOMES, M., FAN, X., and CARMON, T. Cavity optomechanics on a microfluidic resonator with water and viscous liquids. Light:Science and Applications, 2, e110(2013) [13] KRAUSE, A. G., WINGER, M., BLASIUS, T. D., LIN, Q., and PAINTER, O. A high-resolution microchip optomechanical accelerometer. Nature Photonics, 6(11), 768-772(2012) [14] DOOLIN, C., KIM, P., HAUER, B., MACDONALD, A., and DAVIS, J. Multidimensional optomechanical cantilevers for high-frequency force sensing. New Journal of Physics, 16(3), 035001(2014) [15] EICHENFIELD, M., CAMACHO, R., CHAN, J., VAHALA, K. J., and PAINTER, O. A picogramand nanometre-scale photonic-crystal optomechanical cavity. nature, 459(7246), 550-555(2009) [16] QUAN, Q. and LONCAR, M. Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities. Optics Express, 19(19), 18529-18542(2011) [17] KURAMOCHI, E., TANIYAMA, H., TANABE, T., KAWASAKI, K., ROH, Y. G., and NOTOMI, M. Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings. Optics Express, 18(15), 15859-15869(2010) [18] TIAN, F., ZHOU, G., CHAU, F. S., DENG, J., and AKKIPEDDI, R. Measurement of coupled cavities' optomechanical coupling coefficient using a nanoelectromechanical actuator. Applied Physics Letters, 102(8), 081101(2013) [19] ZAITSEV, S., PANDEY, A. K., SHTEMPLUCK, O., and BUKS, E. Forced and self-excited oscillations of an optomechanical cavity. Physical Review E, 84(4), 046605(2011) [20] LI, M., PERNICE, W. H. P., XIONG, C., BAEHR-JONES, T., HOCHBERG, M., and TANG, H. X. Harnessing optical forces in integrated photonic circuits. nature, 456(7221), 480-484(2008) [21] LIN, Q., ROSENBERG, J., JIANG, X., VAHALA, K. J., and PAINTER, O. Mechanical oscillation and cooling actuated by the optical gradient force. Physical Review Letters, 103(10), 103601(2009) [22] GHAYESH, M. H., AMABILI, M., and FAROKHI, H. Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams. International Journal of Engineering Science, 71, 1-14(2013) [23] GHAYESH, M. H., FAROKHI, H., and AMABILI, M. Nonlinear dynamics of a microscale beam based on the modified couple stress theory. Composites Part B:Engineering, 50, 318-324(2013) [24] GHAYESH, M. H., FAROKHI, H., and AMABILI, M. Nonlinear behaviour of electrically actuated MEMS resonators. International Journal of Engineering Science, 71, 137-155(2013) [25] LIN, Q., ROSENBERG, J., CHANG, D., CAMACHO, R., EICHENFIELD, M., VAHALA, K. J., and PAINTER, O. Coherent mixing of mechanical excitations in nano-optomechanical structures. Nature Photonics, 4, 236-242(2010) [26] HE, Y., HE, S., GAO, J., and YANG, X. Giant transverse optical forces in nanoscale slot waveguides of hyperbolic metamaterials. Optics Express, 20(20), 22372-22382(2012) [27] KAZANSKIY, N. L., SERAFIMOVICH, P. G., and KHONINA, S. N. Use of photonic crystal cavities for temporal differentiation of optical signals. Optics Letters, 38(7), 1149-1151(2013) [28] CHAN, J., EICHENFIELD, M., CAMACHO, R., and PAINTER, O. Optical and mechanical design of a "zipper" photonic crystal optomechanical cavity. Optics Express, 17(5), 3802-3817(2009) [29] ZHONG, Z. Y., ZHANG, W. M., ZHOU, Y., MENG, G., and LI, H. Frequency shift of a nanowaveguide resonator driven by the tunable optical gradient force. Journal of the Optical Society of America B, 31(1), 96-104(2014) [30] BAO, M. and YANG, H. Squeeze film air damping in MEMS. Sensors and Actuators A:Physical, 136(1), 3-27(2007) |