Applied Mathematics and Mechanics >
Simulation of nanofluid natural convection based on single-particle hydrodynamics in energy-conserving dissipative particle dynamics (eDPD)
Received date: 2024-01-26
Online published: 2024-07-31
Supported by
the National Natural Science Foundation of China(11872283);the National Natural Science Foundation of China(2002212);the Sailing Program of Shanghai, China(20YF1432800);Project supported by the National Natural Science Foundation of China (Nos. 11872283 and 2002212) and the Sailing Program of Shanghai, China (No. 20YF1432800)
Copyright
In the present study, the nanofliud natural convection is investigated by the energy-conserving dissipative particle dynamics (eDPD) method, where the nanoparticles are considered at the single-particle level. The thermal expansion coefficient β and the viscosity μ of the simulated system containing nanoparticles are calculated and found to be in close alignment with the previous simulation results. The single-particle hydrodynamics in eDPD enables simulations of nanofluid natural convection with higher Rayleigh numbers and greater nanoparticle volume fractions. Additionally, this approach is utilized to simulate the nanoparticle distribution during the enhanced heat transfer process in the nanofluid natural convection. The localized aggregation of nanoparticles enhances the heat transfer performance of the nanofluid under specific Rayleigh numbers and nanoparticles volume fractions.
Wei LU, Shuo CHEN, Zhiyuan YU, Jiayi ZHAO . Simulation of nanofluid natural convection based on single-particle hydrodynamics in energy-conserving dissipative particle dynamics (eDPD)[J]. Applied Mathematics and Mechanics, 2024 , 45(8) : 1429 -1446 . DOI: 10.1007/s10483-024-3130-9
| 1 | MAXWELL,J. C.A Treatise on Electricity and Magnetism,Clarendon Press,London1881(1904) |
| 2 | CHOI,S. U. S.Enhancing thermal conductivity of fluids with nanoparticles.American Society of Mechanical Engineers,231,99-105(1995) |
| 3 | EASTMAN,J. A.,CHOI,S. U. S., andLI,S.Enhanced thermal conductivity through the development of nanofluids.MRS Online Proceedings Library,457,3-11(1996) |
| 4 | LEE,S., andCHOI,S. U. S.Application of metallic nanoparticle suspensions in advanced cooling system.American Society of Mechanical Engineers,232,227-232(1996) |
| 5 | HOOGERBRUGGE,P. J., andKOELMAN,J.Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics.Europhysics Letters,19(3),155-160(1992) |
| 6 | ESPAÑOL,P., andWARREN,P.Statistical mechanics of dissipative particle dynamics.Europhysics Letters,30(4),191-196(1995) |
| 7 | GROOT,R. D., andWARREN,P. B.Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation.Journal of Chemical Physics,107(11),4423-4435(1997) |
| 8 | AVALOS,J. B., andMACKIE,A. D.Dissipative particle dynamics with energy conservation.Europhysics Letters,40(2),141-146(1997) |
| 9 | ESPAÑOL,P.Dissipative particle dynamics with energy conservation.Europhysics Letters,40(6),631-636(1997) |
| 10 | RIPOLL,M., andESPAÑOL,P.Dissipative particle dynamics with energy conservation: heat conduction.International Journal of Modern Physics C,9(8),1329-1338(1998) |
| 11 | RIPOLL,M.,ERNST,M. H., andESPAÑOL,P.Large scale and mesoscopic hydrodynamics for dissipative particle dynamics.Journal of Chemical Physics,115(15),7271-7284(2001) |
| 12 | MACKIE,A. D.Liquid vapor equilibria for an ab initio model for water.Journal of Chemical Physics,111(5),2103-2108(1999) |
| 13 | AVALOS,J. B., andMACKIE,A. D.Dynamic and transport properties of dissipative particle dynamics with energy conservation.Journal of Chemical Physics,111(11),5267-5276(1999) |
| 14 | LUKES,V., andSOLC,R.Theoretical study of the relations between structure and photophysical properties of model oligofluorenes with central keto defect.Journal of Physical Chemistry A,113(51),14141-14149(2009) |
| 15 | HOMMAN,A. A.,MAILLET,J., andROUSSEL,J.New parallelizable schemes for integrating the dissipative particle dynamics with energy conservation.The Journal of Chemical Physics,144(2),024112(2016) |
| 16 | STOLTZ,G.Stable schemes for dissipative particle dynamics with conserved energy.Journal of Computational Physics,340,451-469(2017) |
| 17 | QIAO,R., andHE,P.Preliminary results of large eddy simulations of a hydrocyclone.Molecular Simulation,33(8),677-683(2007) |
| 18 | ABU-NADA,E.Heat transfer simulation using energy conservative dissipative particle dynamics.Molecular Simulation,36(5),382-390(2010) |
| 19 | ABU-NADA,E.Natural convection heat transfer simulation using energy conservative dissipative particle dynamics.Physical Review E,81(5),056704(2010) |
| 20 | ABU-NADA,E.Energy conservative dissipative particle dynamics simulation of natural convection in liquids.Journal of Heat Transfer-Transactions of the ASME,133(11),112502(2011) |
| 21 | ABU-NADA,E.Mixed convection simulation using dissipative particle dynamics.Numerical Heat Transfer Part A-Applications,67(7),808-825(2015) |
| 22 | ABU-NADA,E.Dissipative particle dynamics simulation of combined convection in a vertical lid driven cavity with a corner heater.International Journal of Thermal Sciences,92,72-84(2015) |
| 23 | ABU-NADA,E.Simulation of heat transfer enhancement in nanoliquids using dissipative particle dynamics.International Communications in Heat and Mass Transfer,85,1-11(2017) |
| 24 | ABU-NADA,E.Dissipative particle dynamics investigation of heat transfer mechanisms in Al2O3-water nanofluid.International Journal of Thermal Sciences,123,58-72(2018) |
| 25 | ABU-NADA,E.A dissipative particle dynamics two-component nanoliquid heat transfer model: application to natural convection.International Journal of Heat and Mass Transfer,133,1086-1098(2019) |
| 26 | QIAO,R., andHE,P.Self-consistent fluctuating hydrodynamics simulations of thermal transport in nanoparticle suspensions.Journal of Applied Physics,103,094305(2008) |
| 27 | KOBAYASHI,Y.,TANAKA,S., andARAI,N.Simulation study on the effects of the self-assembly of nanoparticles on thermal conductivity of nanofluids.Chemical Physics Letters,785,139129(2021) |
| 28 | PAN,W. X.,CASWELL,B., andKARNIADAKIS,G. E.Rheology, microstructure and migration in Brownian colloidal suspensions.Langmuir,26(1),133-142(2010) |
| 29 | PAN,W. X.,PIVKIN,I. V., andKARNIADAKIS,G. E.Single-particle hydrodynamics in DPD: a new formulation.Europhysics Letters,84(1),548-551(2008) |
| 30 | LU,Y., andHU,G. H.A potential barrier in the diffusion of nanoparticles in ordered polymer networks.Soft Matter,17(26),6374-6382(2021) |
| 31 | LU,Y.,LIU,X. Y., andHU,G. H.Double-spring model for nanoparticle diffusion in a polymer network.Macromolecules,55(11),4548-4556(2022) |
| 32 | LU,Y., andHU,G. H.Linear polymer chain diffusion in semi-flexible polymer network: a dissipative particle dynamics study.Physics of Fluids,35(1),012007(2023) |
| 33 | MAI-DUY,N., andPHAN-THIEN,N.A numerical study of strongly overdamped dissipative particle dynamics (DPD) systems.Journal of Computational Physics,245,150-159(2013) |
| 34 | PAN,D. Y.,PHAN-THIEN,N., andMAI-DUY,N.Dissipative particle dynamics modeling of low Reynolds number incompressible flows.Journal of Rheology,57(2),585-604(2013) |
| 35 | RIPOLL, M. Dissipative Particle Dynamics with Energy Conservation: Isoenergetic Integration and Transport Properties, Ph. D. dissertation, Universidad Nacional de Educación a Distancia, Spain (2002) |
| 36 | CHEN,S.,PHAN-THIEN,N., andKHOO,B. C.Flow around spheres by dissipative particle dynamics.Physics of Fluids,18(10),103605(2006) |
| 37 | ZHOU,J.,SCHMITZ,R., andDÜNWEG,B.Dynamic and dielectric response of charged colloids in electrolyte solutions to external electric fields.The Journal of Chemical Physics,139(2),024901(2004) |
| 38 | PRYAMITSYN,V., andGANESAN,V.A coarse-grained explicit solvent simulation of rheology of colloidal suspensions.The Journal of Chemical Physics,122(20),104906(2005) |
| 39 | FAN,X. J.,PHAN-THIEN,N., andCHEN,S.Simulating flow of DNA suspension using dissipative particle dynamics.Physics of Fluids,18(6),063102(2006) |
| 40 | AFROUZI,H. H.,MOSHFEGH,A., andJAVADZADEGAN,A.Systematic fine-tuning of dissipative particle dynamics for mesoscale semidilute and dense colloidal suspensions.Physica A: Statistical Mechanics and Its Applications,510,492-506(2018) |
| 41 | ZOHRAVI,E.,SHIRANI,E., andPISHEVAR,A.Influence of the conservative force on transport coefficients in the DPD method.Molecular Simulation,7022,1-8(2018) |
| 42 | WANG,Y.,OUYANG,J., andLI,Y.Parametric study of fluid-solid interaction for single-particle dissipative particle dynamics model.Microfluidics and Nanofluidics,22(8),78(2018) |
| 43 | BRINKMAN,H. C.The viscosity of concentrated suspensions and solutions.The Journal of Chemical Physics,20,571-581(1952) |
| 44 | MAXWELLEGARNETT,J. C.Colours in metal glasses and in metallic films.Philosophical Transactions of the Royal Society of London: Series A,203,385-420(1904) |
| 45 | KHANAFER,K. K., andLIGHTSTONE,V. M.Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluid.International Journal of Heat and Mass Transfer,46,3639-3653(2003) |
| 46 | MOSTAFA,M., andSEYED,M. H.Numerical study of natural convection of a nanoliquid in C-shaped enclosures.International Journal of Thermal Sciences,55,76-89(2012) |
/
| 〈 |
|
〉 |