Abstract According to the three key elements in blade design process, i.e., aerodynamic design, structure design, and load prediction, the independent research and development (R&D) progress of blade design is summarized and analyzed. The calculational fluid dynamics (CFD) method, the vortex method, and the blade element momentum method (BEM) are described. Based on the widely used BEM method, the solutions for the blade design in low-speed wind area are obtained. A brief overview of the traditional design and analysis methods based on beam models is given. The defects of these methods used for simulating the structure of large-scale composite blade are analyzed. The application progress of the finite element method (FEM) used in the blade structure analysis is shown. The effects of load prediction on the blades and entire wind turbine are introduced. The progress in load forecasting is described. With the analysis of the relationship among these three key elements, it is concluded that developing a blade optimization design system with coordinated aerodynamics, structure, and load will truly meet the requirement of high efficiency and low cost. The main directions for further study are pointed out, e.g., high efficiency and low load airfoils, structural nonlinear finite element analysis, aerodynamic structure coupling research, and establishing different design standards. The aim is to establish a blade R&D system suitable for the conditions of wind resources in China and promote the development of wind power in the country.