Applied Mathematics and Mechanics (English Edition) ›› 2008, Vol. 29 ›› Issue (10): 1319-1327 .doi: https://doi.org/10.1007/s10483-008-1007-x

• Articles • 上一篇    下一篇

周期载荷下超弹性圆柱壳的动力响应

任九生   

  1. 上海大学力学系,上海市应用数学与力学研究所,上海,200444
  • 收稿日期:2008-06-23 修回日期:2008-08-25 出版日期:2008-10-01 发布日期:2008-10-01
  • 通讯作者: 任九生

Dynamical response of hyper-elastic cylindrical shells under periodic load

REN Jiu-sheng   

  1. Department of Mechanics, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200444, P. R. China
  • Received:2008-06-23 Revised:2008-08-25 Online:2008-10-01 Published:2008-10-01
  • Contact: REN Jiu-sheng

摘要: 研究了不可压超弹性圆柱壳在内表面周期载荷及突加常值载荷作用下的运动与破坏等动力响应问题。通过对所得描述圆柱壳内表面运动的非线性常微分方程解的数值计算和动力学定性分析,发现存在一个临界载荷;当突加常值载荷或周期载荷的平均载荷值小于这一临界值时,圆柱壳的运动随时间的演化是周期性的或拟周期性的非线性振动,而当其大于这一临界值时,圆柱壳将被破坏。另外,准静态问题的解可作为突加常值载荷作用下系统动力响应解的不动点,且不动点的性质与动力响应解及圆柱壳运动的性质有关。讨论了圆柱壳的厚度和载荷等参数对临界载荷值和圆柱壳运动特性的影响。

关键词: 超弹性圆柱壳, 非线性常微分方程, 周期性振动, 拟周期性振动, 临界载荷

Abstract: Dynamical responses, such as motion and destruction of hyper-elastic cylindrical shells subject to periodic or suddenly applied constant load on the inner surface, are studied within a framework of finite elasto-dynamics. By numerical computation and dynamic qualitative analysis of the nonlinear differential equation, it is shown that there exists a certain critical value for the internal load describing motion of the inner surface of the shell. Motion of the shell is nonlinear periodic or quasi-periodic oscillation when the average load of the periodic load or the constant load is less than its critical value. However, the shell will be destroyed when the load exceeds the critical value. Solution to the static equilibrium problem is a fixed point for the dynamical response of the corresponding system under a suddenly applied constant load. The property of fixed point is related to the property of the dynamical solution and motion of the shell. The effects of thickness and load parameters on the critical value and oscillation of the shell are discussed.

Key words: hyper-elastic cylindrical shells, nonlinear differential equation, periodic oscillation, quasi-periodic oscillation, critical load

中图分类号: 

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals