Applied Mathematics and Mechanics (English Edition) ›› 2008, Vol. 29 ›› Issue (10): 1363-1376 .doi: https://doi.org/10.1007/s10483-008-1011-y

• Articles • 上一篇    下一篇

两个同心旋转圆柱之间的两种流体的交界面几何形状问题

李开泰;史峰   

  1. 西安交通大学,理学院, 陕西, 710049
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2008-10-01 发布日期:2008-10-01
  • 通讯作者: 李开泰

Geometric shapes of the interface surface of bicomponent flows between two concentric rotating cylinders

LI Kai-tai;SHI Feng   

  1. College of Science, Xi'an Jiaotong University, Xi'an 710049, P. R. China
  • Received:1900-01-01 Revised:1900-01-01 Online:2008-10-01 Published:2008-10-01
  • Contact: LI Kai-tai

摘要: 本文研究两个同心旋转圆柱之间的两种流体的交界面几何形状问题. 利用张量分析工具, 我们给出了忽略耗散能量影响下交界面几何形状是一种能量泛函的临界点, 其对应的Eular-Lagrange方程是一个非线性椭圆边值问题. 对于粘性引起的耗散能量不能忽略的情况下, 我们同样给出了一个带有耗散能量的能量泛函, 其临界点是交界面几何形状, 相应的Eular-Lagrange方程也是一个二阶的非线性椭圆边值问题. 这样, 交界面几何形状问题转化为求解非线性椭圆边值问题.

关键词: 两种流体, 交界面, Navier-Stokes 方程, 同心旋转圆柱

Abstract: In this paper, the shape problem of interface of bicomponent flows between two concentric rotating cylinders is investigated. With tensor analysis, the problem is reduced to an energy functional isoperimetric problem when neglecting the effects of the dissipative energy caused by viscosity. We derive the associated Euler-Lagrangian equation, which is a nonlinear elliptic boundary value problem of the second order. Moreover, by considering the effects of the dissipative energy, we propose another total energy functional to characterize the geometric shape of the interface, and obtain the corresponding Euler-Lagrangian equation, which is also a nonlinear elliptic boundary value problem of the second order. Thus, the problem of the geometric shape is converted into a nonlinear boundary value problem of the second order in both cases.

Key words: concentric rotating cylinders, bicomponent fiow, interface surface, Navier-Stokes equations

中图分类号: 

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals