Applied Mathematics and Mechanics (English Edition) ›› 2008, Vol. 29 ›› Issue (12): 1553-1559 .doi: https://doi.org/10.1007/s10483-008-1203-x

• Articles • 上一篇    下一篇

基于应变梯度理论的粘塑性厚壁圆筒和球壳极限内压分析

李茂林1,2;扶名福1   

  1. 1.南昌大学 机电学院,南昌 330029;
    2.南昌航空大学 土木建筑学院,南昌 330046
  • 收稿日期:2008-07-14 修回日期:2008-10-15 出版日期:2008-12-01 发布日期:2008-12-01
  • 通讯作者: 扶名福

Limit analysis of viscoplastic thick-walled cylinder and spherical shell under
internal pressure using a strain gradient plasticity theory

LI Mao-lin1,2;FU Ming-fu1   

  1. 1. School of Mechanical and Electrical Engineering, Nanchang University, Nanchang 330029, P. R. China; 2. College of Civil Engineering and Architecture, Nanchang University of Aeronautics, Nanchang 330046, P. R. China
  • Received:2008-07-14 Revised:2008-10-15 Online:2008-12-01 Published:2008-12-01
  • Contact: FU Ming-fu

摘要: 基于应变梯度塑性理论,分析了内压作用下厚壁圆筒和球壳的塑性极限荷载.结果表明:圆筒内径在微米量级时,存在尺度效应现象,内径减小,其尺度效应增强;变形越大,影响越大;应变速率敏感指数越大,尺度效应越明显.经典塑性理论结果是当前解的特例.

Abstract: Plastic limit load of viscoplastic thick-walled cylinder and spherical shell subjected to internal pressure is investigated analytically using a strain gradient plasticity theory. As a result, the current solutions can capture the size effect at the micron scale. Numerical results show that the smaller the inner radius of the cylinder or spherical shell, the more significant the scale effects. Results also show that the size effect is more evident with increasing strain or strain-rate sensitivity index. The classical plastic-based solutions of the same problems are shown to be a special case of the present solution.

中图分类号: 

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals