Applied Mathematics and Mechanics (English Edition) ›› 2009, Vol. 30 ›› Issue (1): 29-38 .doi: https://doi.org/10.1007/s10483-009-0104-1

• Articles • 上一篇    下一篇

广义KdV方程Fourier谱逼近的最优误差估计

邓镇国1,2;马和平1   

  1. 1.上海大学 数学系,上海 200444;
    2.广西大学 数学与信息科学学院, 南宁 530004
  • 收稿日期:2008-03-05 修回日期:2008-11-28 出版日期:2009-01-01 发布日期:2009-01-01
  • 通讯作者: 马和平

Optimal error estimates for Fourier spectral approximation of the generalized KdV equation

Zhen-guo DENG1,2;He-ping MA 1   

  1. 1. Department of Mathematics, Shanghai University,Shanghai 200444, P. R. China; 2. School of Mathematics and Information Science,Guangxi University, Nanning 530004, P. R. China
  • Received:2008-03-05 Revised:2008-11-28 Online:2009-01-01 Published:2009-01-01
  • Contact: He-ping MA

摘要: 分析了一类带周期边界条件的广义KdV方程Fourier谱方法,得到了L2-范数下最优误差估计,改进了由Maday和Quarteroni给出的结果,还提出了一种修改Fourier拟谱方法,并且证明它享有与Fourier谱方法同样的收敛性.

Abstract: A Fourier spectral method for the generalized Korteweg-de Vries equation with periodic boundary conditions is analyzed, and a corresponding optimal error estimate in L2-norm is obtained. It improves the result presented by Maday and Quarteroni. A modified Fourier pseudospectral method is also presented, with the same convergence properties as the Fourier spectral method.

中图分类号: 

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals