Applied Mathematics and Mechanics (English Edition) ›› 2009, Vol. 30 ›› Issue (1): 89-100 .doi: https://doi.org/10.1007/s10483-009-0110-6

• Articles • 上一篇    下一篇

基于CCH的SVM几何算法及其应用

彭新俊1,2;王翼飞3   

  1. 1.上海师范大学 计算数学系,上海 200234;
    2.科学计算上海高校重点实验室,上海 200234;
    3.上海大学 数学系,上海 200444
  • 收稿日期:2008-05-16 修回日期:2008-10-20 出版日期:2009-01-01 发布日期:2009-01-01
  • 通讯作者: 彭新俊

CCH-based geometric algorithms for SVM and applications

Xin-jun PENG1,2;Yi-fei WANG3   

  1. 1. Department of Mathematics, Shanghai Normal University, Shanghai 200234, P. R. China; 2. Scientific Computing Key Laboratory of Shanghai Universities, Shanghai Normal University,Shanghai 200234, P. R. China; 3. Department of Mathematics, Shanghai University, Shanghai 200444, P. R. China
  • Received:2008-05-16 Revised:2008-10-20 Online:2009-01-01 Published:2009-01-01
  • Contact: Xin-jun PENG

摘要: 支持向量机(support vector machine(SVM))是一种数据挖掘中新型机器学习方法.提出了基于压缩凸包(compressed convex hull(CCH))的SVM分类问题的几何算法.对比简约凸包(reduced convex hull(RCH)),CCH保持了数据的几何体形状,并且易于得到确定其极点的充要条件.作为CCH的实际应用,讨论了该几何算法的稀疏化方法及概率加速算法.数值试验结果表明所讨论的算法可降低核计算并取得较好的性能.

Abstract: The support vector machine (SVM) is a novel machine learning tool in data mining. In this paper, the geometric approach based on the compressed convex hull (CCH) with a mathematical framework is introduced to solve SVM classification problems. Compared with the reduced convex hull (RCH), CCH preserves the shape of geometric solids for data sets; meanwhile, it is easy to give the necessary and sufficient condition for determining its extreme points. As practical applications of CCH, spare and probabilistic speed-up geometric algorithms are developed. Results of numerical experiments show that the proposed algorithms can reduce kernel calculations and display nice performances.

中图分类号: 

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals