[1] Peskin, C. S. Numerical analysis of blood flow in the heart. J. Comput. Phys., 25, 220-252 (1997)
[2] Peskin, C. S. and McQueen, D. M. A three-dimensional computational method for blood flowin the heart I. immersed elastic fibers in a viscous incompressible fluid. J. Comput. Phys., 81,372-405 (1989)
[3] Dillion, R., Fauci, L. J., and Gaver, D. A microscale model of bacteria swimming, chemotaxis,and substrate transport. J. Theor. Biol., 177, 325-340 (1995)
[4] Fauci, L. J. and McDonald, A. Sperm motility in the presence of boundaries. B. Math. Biol., 57,679-699 (1995)
[5] Fauci, L. J. and Peskin, C. S. A computational model of aquatic animal locomotion. J. Comput.Phys., 77, 85-108 (1988)
[6] Bottino, D. C. Modeling viscoelastic networks and cell deformation in the context of the immersedboundary method. J. Comput. Phys., 147, 86-113 (1998)
[7] Fogelson, A. L. Continumm models of platelet aggregation: formulation and mechanical properties.SIAM J. Appl. Math., 52, 1089-1110 (1992)
[8] Fauci, L. J. and Fogelson, A. L. Truncated Newton’s methods and the modeling of compleximmersed elastic structures. Comm. Pure Appl. Math., 46, 787-818 (1993)
[9] Eggleton, C. D. and Popel, A. S. Large deformation of red blood cell ghosts in a simple shearflow. Phys. Fluids, 10, 1834-1845 (1998)
[10] Tu, C. and Peskin, C. S. Stability and instability in the computation of flows with moving immersedboundaries: a comparison of three methods. SIAM J. Sci. Stat. Comput., 13(6), 1361-1376(1992)
[11] Stockie, J. M. and Wetton, B. R. Analysis of stiffness in the immersed boundary method andimplications for time-stepping schemes. J. Comput. Phys., 154, 41-64 (1999)
[12] Stockie, J. M. and Wetton, B. R. Stability analysis for the immersed fiber problem. SIAM J. Appl.Math., 55, 1577-1591 (1995)
[13] Gong, Z. X., Huang, H. X., and Lu, C. J. Stability analysis of the immersed boundary methodfor a two-dimensional membrane with bending rigidity. Commun. Comput. Phys., 3(3), 704-723(2008)
[14] Beyer, R. P. and LeVeque, R. J. Analysis of a one-dimensional model for the immersed boundarymethod. SIAM J. Numer. Anal., 29, 332-364 (1992)
[15] Griffith, B. E. and Peskin, C. S. On the order of accuracy of the immersed boundary method:higher order convergence rates for sufficiently smooth problems. J. Comput. Phys., 208, 75-105(2005)
[16] Lai, M. C. and Peskin, C. S. An immersed boundary method with formal second-order accuracyand reduced numerical viscosity. J. Comput. Phys., 160, 705-719 (2000)
[17] Gong, Z. X., Lu, C. J., and Huang, H. X. Accuracy analysis of immersed boundary methodusing method of manufactured solutions. Appl. Math. Mech. -Engl. Ed., 31(10), 1197-1208 (2010)DOI 10.1007/s10483-010-1353-x
[18] Lai, M. C. Simulations of the Flow Past an Array of Circular Cylinders as a Test of the ImmersedBoundary Method, Ph. D. dissertation, New York University (1998)
[19] Steinberg, S. and Roache, P. J. Symbolic manipulation and computation fluid dynamics. J. Comput.Phys., 57, 251-284 (1985)
[20] Roache, P. J. Verification and Validation in Computational Science and Engineering, HermosaPublishers, Albuquerque (1998)
[21] Roache, P. J. Code verification by the method of manufactured solutions. J. Fluid Eng., 124(1),4-10 (2002)
[22] Oberkampf, W. L. and Trucano, T. G. Validation Methodology in Computational Fluid Dynamics,American Institute of Aeronautics and Astronautics, Denver, 2000-2549 (2000)
[23] Oberkampf, W. L. and Trucano, T. G. Verification and validation in computational fluid dynamics.Prog. Aero. Sci., 38, 209-272 (2002)
[24] Roy, C. J., Nelson, C. C., Smith, T. M., and Ober, C. C. Verification of Euler/Navier-Stokes codesusing the method of manufactured solutions. Int. J. Numer. Mech. Fl., 44, 599-620 (2004)
[25] Bond, R. B., Ober, C. C., and Knupp, P. M. A manufactured solution for verifying CFD boundaryconditions, part III. 36th AIAA Fluid Dynamics Conference, American Institute of Aeronauticsand Astronautics, San Francisco, 1966-1982 (2006)
[26] Brunner, T. A. Development of a grey nonlinear thermal radiation diffusion verification problem.Transactions of the American Nuclear Society, 95, 876-878 (2006)
[27] Eca, L., Hoekstra, M., Hay, A., and Pelletier, D. On the construction of manufactured solutionsfor one- and two-equation eddy-viscosity models. Int. J. Numer. Mech. Fl., 54, 119-154 (2007)
[28] Tremblay, D., Etienne, S., and Pelletier, D. Code verification and the method of manufactured solutionsfor fluid-structure interaction problems. 36th AIAA Fluid Dynamics Conference, AmericanInstitute of Aeronautics and Astronautics, San Francisco, 882-892 (2006)
[29] Peskin, C. S. The immersed boundary method. Acta Numer., 11, 1-39 (2002)
[30] Stockie, J. M. Analysis and Computation of Immersed Boundaries with Application to Pulp Fibers,Ph. D. dissertation, University of British Columbia (1997) |