[1] Hughes, T. J. R. and Brooks, A. A multidimensional upwind scheme with no crosswind diffusion. Finite Element Methods for Convection Dominated Flows, American Society of Mechanical Engineers, New York, 19-35(1979) [2] Franca, L. P., John, V., Matthies, G., and Tobiska, L. An inf-sup stable and residual-free bubble element for the Oseen equations. SIAM Journal on Numerical Analysis, 45, 2392-2407(2007) [3] Johnson, C. and Saranen, J. Streamline diffusion methods for the incompressible Euler and NavierStokes equations. Mathematics of Computation, 47, 1-18(1986) [4] Lube, G. and Tobiska, L. A nonconforming finite element method of streamline diffusion type for the incompressible Navier-Stokes equations. Journal of Computational Mathematics, 8, 147-158(1990) [5] Shi, D. Y., Cui, H. X., and Guan, H. B. Streamline-diffusion method of a lowest order nonconforming rectangular finite element for convection-diffusion problem. Acta Mathematicae Applicatae Sinica, English Series, 31, 427-434(2015) [6] Sun, T. J. and Ma, K. Y. The finite difference streamline diffusion method for the incompressible Navier-Stokes equations. Applied Mathematics and Computation, 149, 493-505(2004) [7] Tobiska, L. and Lube, G. A modified streamline diffusion method for solving the stationary NavierStokes equation. Numerische Mathematik, 59, 13-29(1991) [8] Tobiska, L. and Verfürth, R. Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equations. SIAM Journal on Numerical Analysis, 33, 107-127(1996) [9] Zhang, Q. Finite difference streamline diffusion method for incompressible N-S equations (in Chinese). Mathematica Numerica Sinica, 25, 311-320(2003) [10] Lube, G. and Rapin, G. Residual-based stabilized higher-order FEM for a generalized Oseen problem. Mathematical Models and Methods in Applied Sciences, 16, 949-966(2006) [11] Matthies, G., Lube, G., and and Röhe, L. Some remarks on residual-based stabilisation of infsup stable discretisations of the generalised Oseen problem. Computational Methods in Applied Mathematics, 9, 368-390(2009) [12] Braack, M. and Burman E. Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method. SIAM Journal on Numerical Analysis, 43, 2544-2566(2006) [13] Matthies, G., Skrzypacz, P., and Tobiska, L. A unified convergence analysis for local projection stabilisations applied to the Oseen problem. ESIAM:Mathematical Modelling and Numerical Analysis, 41, 713-742(2007) [14] Bai, Y. H., Feng, M. F., and Wang, C. L. Nonconforming local projection stabilization for generalized Oseen equations. Applied Mathematics and Mechanics (English Edition), 31(11), 1439-1452(2010) https://doi.org/10.1007/s10483-010-1374-7 [15] Knobloch, P. and Tobiska, L. Improved stability and error analysis for a class of local projection stabilizations applied to the Oseen problem. Numerical Methods for Partial Differential Equations, 29, 206-225(2013) [16] Chen, H. T., Lin, Q., Zhou, J. M., and Wang, H. Uniform error estimates for triangular finite element solutions of advection-diffusion equations. Advances in Computational Mathematics, 38, 83-100(2013) [17] Brezzi, F. On the existence, uniqueness and approximation of saddle point problems arising from Lagrange multipliers. RAIRO Mathematical Modeling and Numerical Analysis, 8, 129-151(1974) [18] Lin, Q. and Lin, J. F. Finite Element Methods:Accuracy and Improvement, Science Press, Beijing (2006) [19] Li, Q. S., Sun, H. X., and Chen, S. C. Convergence of a mixed finite element for the Stokes problem on anisotropic meshes. Journal of Computational Mathematics, 26, 740-755(2008) |