[1] WILLIAMS, J. A brief history of British research on boundary layer control for high lift. Boundary Layer Control, Pergamon Press, Oxford, 74-103(1961)
[2] HEAD, M. R. History of research on boundary layer control for low drag in UK. Boundary Layer and Flow Control, Pergamon Press, Oxford, 104-121(1961)
[3] FLATT, J. The history of boundary layer control research in the United States of America. Boundary Layer and Flow Control, Pergamon Press, Oxford, 122-143(1961)
[4] WEIBERG, J. A. and DANNENBERG, R. E. Section characteristics of an NACA 0006 airfoil with area suction near the leading edge. NACA Technical Note, National Advisory Committee for Aeronautics, Washington, D. C., 1-47(1954)
[5] HUANG, L., HUANG, P. G., LEBEAU, R. P., and HAUSER, T. Numerical study of blowing and suction control mechanism on NACA 0012 airfoil. Journal of Aircraft, 41(5), 1005-1013(2004)
[6] CORKE, T. C. and POST, M. L. Overview of plasma flow control:concepts, optimization, and applications. 43rd AIAA Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reno, Nevada, 578-563(2005)
[7] CORKE, T. C., MERTZ, B., and PATEL, M. P. Plasma flow control optimized airfoil. 44th AIAA Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reno, Nevada, 1208-1221(2006)
[8] POST, M. L. and CORKE, T. C. Separation control using plasma actuators:dynamic stall vortex control on oscillating airfoil. AIAA Journal, 44(12), 3125-3135(2006)
[9] SUZEN, Y. B., HUANG, P. G., JACOB, J. D., and ASHPIS, D. E. Numerical simulations of plasma based flow control applications. 35th AIAA Fluid Dynamics Conference and Exhibit, American Institute of Aeronautics and Astronautics, Toronto, 4633-4644(2005)
[10] HASSAN, A. A. and JANAKIRAM, R. D. Effects of zero-mass "synthetic" jets on the aerodynamics of the NACA-0012 airfoil. Journal of the American Helicopter Society, 43(4), 303-311(1998)
[11] RIZZETTA, D. P., VISBAL, M. R., and STANEK, M. J. Numerical investigation of synthetic-jet flow fields. AIAA Journal, 37(8), 919-927(1999)
[12] AMITAY, M., SMITH, D. R., KIBENS, V., PAREKH, D. E., and GLEZER, A. Aerodynamic flow control over an unconventional airfoil using synthetic jet actuators. AIAA Journal, 39(3), 361-370(2001)
[13] ZHANG, P., WANG, J., and FENG, L. Review of zero-net-mass-flux jet and its application in separation flow control. Science in China Series E:Technological Sciences, 51(9), 1315-1344(2008)
[14] RAJU, R., MITTAL, R., and CATTAFESTA, L. Dynamics of airfoil separation control using zero-net mass-flux forcing. AIAA Journal, 46(12), 3103-3115(2008)
[15] SEIFERT, A., DARABI, A., and WYGANSKI, I. Delay of airfoil stall by periodic excitation. Journal of Aircraft, 33(4), 691-698(1996)
[16] SEIFERT, A., ELIAHU, S., GREENBLATT, D., and WYGNANSKI, I. Use of piezoelectric actuators for airfoil separation control. AIAA Journal, 36(8), 1535-1537(1998)
[17] HSIAO, F. B., LIANG, P. F., and HUANG, C. Y. High-incidence airfoil aerodynamics improvement by leading-edge oscillating flap. Journal of Aircraft, 35(3), 508-510(1998)
[18] SINHA, S. K. Flow separation control with microflexural wall vibrations. Journal of Aircraft, 38(3), 496-503(2001)
[19] KANG, W., ZHANG, J., LEI, P., and XU, M. Computation of unsteady viscous flow around a locally flexible airfoil at low Reynolds number. Journal of Fluids and Structures, 46, 42-58(2014)
[20] KANG, W., ZHANG, J., and FENG, P. Aerodynamic analysis of a localized flexible airfoil at low Reynolds numbers. Communications in Computational Physics, 11(4), 1300-1310(2012)
[21] YARUSEVYCH, S., KAWALL, J. G., and SULLIVAN, P. E. Airfoil performance at low Reynolds numbers in the presence of periodic disturbances. Journal of Fluids Engineering, 128(3), 587-595(2006)
[22] TANI, I. Low-speed flows involving bubble separations. Progress in Aerospace Sciences, 5, 71-103(1964)
[23] LIN, J. and PAULEY, L. L. Low-Reynolds-number separation on an airfoil. AIAA Journal, 34(8), 1570-1577(1996)
[24] YARUSEVYCH, S., SULLIVAN, P. E., and KAWALL, J. G. On vortex shedding from an airfoil in low-Reynolds-number flows. Journal of Fluid Mechanics, 632, 245-271(2009)
[25] YARUSEVYCH, S., SULLIVAN, P. E., and KAWALL, J. G. Coherent structures in an airfoil boundary layer and wake at low Reynolds numbers. Physics of Fluids, 18(4), 44101(2006)
[26] YARUSEVYCH, S. and BOUTILIER, M. S. H. Vortex shedding of an airfoil at low Reynolds numbers. AIAA Journal, 49(10), 2221-2227(2011)
[27] LADSON, C. L., BROOKS, C. W., JR, HILL, A. S., and SPROLES, D. W. Computer program to obtain ordinates for NACA airfoils. NASA Technical Memorandum, National Aeronautics and Space Administration, Hampton, Virginia, 1-27(1996)
[28] VERSTEEG, H. K. and MALALASEKERA, W. An Introduction to Computational Fluid Dynamics:the Finite Volume Method, 2nd ed., Pearson Education, London, 40-113(2007)
[29] WONG, C. and KONTIS, K. Flow control by spanwise blowing on a NACA 0012. Journal of Aircraft, 44(1), 337-340(2007)
[30] YUAN, W., XU, H., KHALID, M., and RADESPIEL, R. A parametric study of LES on laminarturbulent transitional flows past an airfoil. International Journal of Computational Fluid, 20(1), 45-54(2006)
[31] LISSAMAN, P. B. S. Low-Reynolds-number airfoils. Annual Review of Fluid Mechanics, 15(1), 223-239(2003)
[32] MALKIEL, E. and MAYLE, R. E. Transition in a separation bubble. 40th International Gas Turbine and Aeroengine Congress and Exposition, American Society of Mechanical Engineers, Houston, Texas, 752-759(1995)
[33] MUNDAY, D. and JACOB, J. Active control of separation on a wing with oscillating camber. Journal of Aircraft, 39(1), 187-189(2002) |