[1] YUZO, I., SHINJI, K., YOSHIMITSU, A., and YASUHIRO, A. Inkjet fabrication of polymer microlens for optical-i/o chip packaging. Japanese Journal of Applied Physics, 39(3B), 1490-1493(2000) [2] BERG, M. V. D., SMITH, P. J., PERELAER, J., SCHROF, W., KOLTZENBURG, S., and SCHUBERT, U. S. Inkjet printing of polyurethane colloidal suspensions. Soft Matter, 3(2), 238-243(2007) [3] STRINGER, J. and DERBY, B. Limits to feature size and resolution in inkjet printing. Journal of the European Ceramic Society, 29(5), 913-918(2009) [4] WIJSHOFF, H. The dynamics of the piezo inkjet printhead operation. Physics Reports, 491(4), 77-177(2010) [5] CASTREJON-PITA, J. R., BAXTER, W. R. S., MORGAN, J., TEMPLE, S., MARTIN, G. D., and HUTCHINGS, I. M. Future, opportunities and challenges of inkjet technologies. Atomization and Sprays, 23(6), 1490-1493(2013) [6] BOS, A. V. D., MEULEN, M. J. V. D., DRIESSEN, T., BERG, M. V. D., REINTEN, H., WIJSHOFF, H., VERSLUIS, M., and LOHSE, D. Velocity profile inside piezoacoustic inkjet droplets in flight:comparison between experiment and numerical simulation. Physical Review Applied, 1(1), 014004-1(2014) [7] HE, B., YANG, S., QIN, Z., WEN, B., and ZHANG, C. The roles of wettability and surface tension in droplet formation during inkjet printing. Scientific Reports, 7(1), 11841(2017) [8] DERBY, B. Inkjet printing of functional and structural materials:fluid property requirements, feature stability, and resolution. Annual Review of Materials Research, 40(1), 395-414(2010) [9] BASARAN, O. A., GAO, H., and BHAT, P. P. Nonstandard inkjets. Annual Review of Fluid Mechanics, 45(1), 85-113(2013) [10] MARTIN, G. D., HOATH, S. D., and HUTCHINGS, I. M. Inkjet printing-the physics of manipulating liquid jets and drops. Journal of Physics:Conference Series, 105(1), 012001(2008) [11] LIOU, T. M., CHAN, C. Y., and SHIH, K. C. Effects of actuating waveform, ink property, and nozzle size on piezoelectrically driven inkjet droplets. Microfluidics and Nanofluidics, 8(5), 575-586(2010) [12] RAYLEIGH, L. On the instability of jets. Proceedings of the London Mathematical Society, 10, 4-13(1878) [13] SAVART, F. Memoire sur la constitution des veines liquides lancees par des orifices circulaires en mince paroi. Annales de Chimie et de Physique, 53, 337-386(1833) [14] RAYLEIGH, L. On the instability of a cylinder of viscous liquid under capillary force. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 34(207), 145-154(1892) [15] PIMBLEY, W. T. and LEE, H. C. Satellite droplet formation in a liquid jet. IBM Journal of Research and Development, 21(1), 21-30(1977) [16] YUEN, M. C. Non-linear capillary instability of a liquid jet. Journal of Fluid Mechanics, 33(1), 151-163(1968) [17] EGGERS, J. Nonlinear dynamics and breakup of free-surface flows. Reviews of Modern Physics, 69(3), 865-930(1997) [18] NOTZ, P. K., CHEN, A. U., and BASARAN, O. A. Satellite drops:unexpected dynamics and change of scaling during pinch-off. Physics of Fluids, 13(3), 549-552(2001) [19] DONG, H., CARR, W. W., and MORRIS, J. F. Visualization of drop-on-demand inkjet:drop formation and deposition. Review of Scientific Instruments, 77(8), 085101(2006) [20] DONG, H., CARR, W. W., and MORRIS, J. F. An experimental study of drop-on-demand drop formation. Physics of Fluids, 18(7), 072102(2006) [21] CASTREJON-PITA, J. R., MARTIN, G. D., HOATH, S. D., and HUTCHINGS, I. M. A simple large-scale droplet generator for studies of inkjet printing. Review of Scientific Instruments, 79(7), 075108(2008) [22] FAN, K. C., CHEN, J. Y., WANG, C. H., and PAN, W. C. Development of a drop-on-demand droplet generator for one-drop-fill technology. Sensors and Actuators A:Physical, 147(2), 649-655(2008) [23] KWON, K. S. Speed measurement of ink droplet by using edge detection techniques. Measurement, 42(1), 44-50(2009) [24] MATHUES, W., MCILORY, C., HARLEN, O. G., and CLASEN, C. Capillary breakup of suspensions near pinch-off. Physics of Fluids, 27(9), 093301(2015) [25] FROMM, J. E. Numerical calculation of the fluid dynamics of drop-on-demand jets. IBM Journal of Research and Development, 28(3), 322-333(1984) [26] ADAMS, R. L. and ROY, J. A one-dimensional numerical model of a drop-on-demand inkjet. Journal of Applied Mechanics, 53(1), 193-197(1986) [27] REIS, N. and DERBY, B. Inkjet deposition of ceramic suspensions:modeling and experiments of droplet formation. Material Research Society Proceedings, 625, 117-122(2000) [28] FENG, J. Q. A general fluid dynamic analysis of drop ejection in drop-on-demand inkjet devices. Journal of Imaging Science and Technology, 46(5), 398-408(2002) [29] AMBRAVANESWARAN, B., WILKES, E. D., and BASARAN, O. A. Drop formation from a capillary tube:comparison of one-dimensional and two-dimensional analyses and occurrence of satellite drops. Physics of Fluids, 14(8), 2606-2621(2002) [30] YANG, A. S., YANG, J. C., and HONG, M. C. Droplet ejection study of a picojet printhead. Journal of Micromechanics and Microengineering, 16(1), 180-188(2006) [31] XU, Q. and BASARAN, O. A. Computational analysis of drop-on-demand drop formation. Physics of Fluids, 19(10), 102111(2007) [32] YANG, G. and LIBURDY, J. A. Droplet formation from a pulsed vibrating micro-nozzle. Journal of Fluids and Structures, 24(4), 576-588(2008) [33] LEIB, S. J. and GOLDSTEIN, M. E. Convective and absolute instability of a viscous liquid jet. The Physics of Fluids, 29(4), 952-954(1986) [34] ANANTHARAMAIAH, N., TAFRESHI, H. V., and POURDEYHIMI, B. A simple expression for predicting the inlet roundness of micro-nozzles. Journal of Micromechanics and Microengineering, 17(5), 31-39(2007) [35] LAI, J. M., HUANG, C. Y., CHEN, C. H., LINLIU, K., and LIN, J. D. Influence of liquid hydrophobicity and nozzle passage curvature on microfluidic dynamics in a drop ejection process. Journal of Micromechanics and Microengineering, 20(1), 1-14(2010) [36] ROSELLO, M., MAITREJEAN, G., ROUX, D. C. D., JAY, P., BARBET, B., and XING, J. Influence of the nozzle shape on the breakup behavior of continuous inkjets. Journal of Fluids Engineering, 140(3), 1-8(2017) [37] CASTREJON-PITA, J. R., MORRISON, N. F., HARLEN, O. G., MARTIN, G. D., and HUTCHINGS, I. M. Experiments and Lagrangian simulations on the formation of droplets in drop-ondemand mode. Physical Review E, 83(3), 1-12(2011) [38] MEIXNER, R. M., CIBIS, D., KRUEGER, K., and GOEBEL, H. Characterization of polymer inks for drop-on-demand printing systems. Microsystem Technologies, 14(8), 1137-1142(2008) [39] JANG, D., KIM, D., and MOON, J. Influence of fluid physical properties on inkjet printability. Langmuir, 25(5), 2629-2635(2009) [40] DERBY, B. and REIS, N. Inkjet printing of highly loaded particulate suspensions. MRS Bulletin, 28(11), 815-818(2003) [41] DERBY, B. Inkjet printing ceramics:from drops to solid. Journal of the European Ceramic Society, 31(14), 2543-2550(2011) [42] KIM, E. and BAEK, J. Numerical study on the effects of non-dimensional parameters on dropon-demand droplet formation dynamics and printability range in the up-scaled model. Physics of Fluids, 24(8), 082103(2012) [43] HIRT, C. W. and NICHOLS, B. D. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201-225(1981) [44] BRACKBILL, J. U., KOTHE, D. B., and ZEMACH, C. A continuum method for modeling surface tension. Journal of Computational Physics, 100(2), 335-354(1992) |