[1] Español, P. and Revenga, M. Smoothed dissipative particle dynamics. Physical Review E, 67, 02675(2003)
[2] Hoogerbrugge, P. J. and Koelman, J. M. V. A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhysics Letters, 19, 155(1992)
[3] Español, P. and Warren, P. Statistical mechanics of dissipative particle dynamics. Europhysics Letters, 30, 191(1995)
[4] Español, P. and Warren, P. B. Perspective:dissipative particle dynamics. The Journal of Chemical Physics, 146, 1-166(2017)
[5] Fan, X. J., Phan-Thien, N., Chen, S., Wu, X. H., and Ng, T. Y. Simulating flow of DNA suspension using dissipative particle dynamics. Physics of Fluids, 18, 063102(2006)
[6] Lei, H., Mundy, C. J., Schenter, G. K., and Voulgarakis, N. K. Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics. The Journal of Chemical Physics, 142, 194504(2015)
[7] Bian, X., Litvinov, S., Qian, R., Ellero, M., and Adams, N. A. Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics. Physics of Fluids, 24, 12002(2012)
[8] Vázquez-Quesada, A., Bian, X., and Ellero, M. Three-dimensional simulations of dilute and concentrated suspensions using smoothed particle hydrodynamics. Computational Particle Mechanics, 3, 167-178(2015)
[9] Moreno, N., Vignal, P., Li, J., and Calo, V. M. Multiscale modeling of blood flow:coupling finite elements with smoothed dissipative particle dynamics. Procedia Computer Science, 18, 2565-2574(2013)
[10] Müller, K., Fedosov, D. A., and Gompper, G. Margination of micro-and nanoparticles in blood flow and its effect on drug delivery. Scientific Reports, 4, 4871(2014)
[11] Litvinov, S., Hu, X. Y., and Adams, N. A. Numerical simulation of tethered DNA in shear flow. Journal of Physics:Condensed Matter, 23, 184118(2011)
[12] Litvinov, S., Ellero, M., Hu, X. Y., and Adams, N. A. Smoothed dissipative particle dynamics model for polymer molecules in suspension. Physical Review E, 77, 6703(2008)
[13] Litvinov, S., Ellero, M., Hu, X. Y., and Adams, N. A. A splitting scheme for highly dissipative smoothed particle dynamics. Journal of Computational Physics, 229, 5457-5464, (2010)
[14] Litvinov, S., Xie, Q. G., Hu, X. Y., Adams, N. A., and Ellero, M. Simulation of individual polymer chains and polymer solutions with smoothed dissipative particle dynamics. Fluids, 1, 7(2016)
[15] Thieulot, C. A. P., Janssen, L., and Español, P. Smoothed particle hydrodynamics model for phase separating fluid mixtures, I:general equations. Physical Review E, 72, 016713(2005)
[16] Thieulot, C. A. P., Janssen, L., and Español, P. Smoothed particle hydrodynamics model for phase separating fluid mixtures, Ⅱ:diffusion in a binary mixture. Physical Review E, 72, 016714(2005)
[17] Thieulot, C. and Español, P. Non-isothermal diffusion in a binary mixture with smoothed particle hydrodynamics. Computer Physics Communications, 169, 172-176(2005)
[18] Petsev, N. D., Leal, L. G., and Shell, M. S. Multiscale simulation of ideal mixtures using smoothed dissipative particle dynamics. The Journal of Chemical Physics, 144, 084115(2016)
[19] Vázquez-Quesada, A., Ellero, M., and Español, P. Smoothed particle hydrodynamic model for viscoelastic fluids with thermal fluctuations. Physical Review E, 79, 056707(2009)
[20] Kulkarni, P. M., Fu, C. C., Shell, M. S., and Leal, L. G. Multiscale modeling with smoothed dissipative particle dynamics. The Journal of Chemical Physics, 138, 234105(2013)
[21] Tang, Y. H., Kudo, S., Bian, X., Li, Z., and Karniadakis, G. E. Multiscale universal interface:a concurrent framework for coupling heterogeneous solvers. Journal of Computational Physics, 297, 13-31(2015)
[22] Öttinger, H. C. Beyond Equilibrium Thermodynamics, Wiley & Sons, New York (2005)
[23] Lucy, L. B. A numerical approach to testing the fission hypothesis. Astronomical Journal, 82, 1013-1024(1977)
[24] Gingold, R. A. and Monaghan, J. J. Binary fission in damped rotating polytropes. Monthly Notices of the Royal Astronomical Society, 184, 481-499(1978)
[25] Liu, G. R. and Liu, M. B. Smoothed Particle Hydrodynamics, World Scientific Publishing Company, Singapore (2003)
[26] Liu, M. B. and Liu, G. R. Smoothed particle hydrodynamics (SPH):an overview and recent developments. Archives of Computational Methods in Engineering, 17, 25-76(2010)
[27] Wang, Z. B., Chen, R., Wang, H., Liao, Q., Zhu, X., and Li, S. Z. An overview of smoothed particle hydrodynamics for simulating multiphase flow. Applied Mathematical Modelling, 40, 9625-9655(2016)
[28] Violeau, D. and Rogers, B. D. Smoothed particle hydrodynamics (SPH) for freesurface flows:past, present and future. Journal of Hydraulic Research, 54, 1-26(2016)
[29] Groot, R. D. How to impose stick boundary conditions in coarse-grained hydrodynamics of Brownian colloids and semi-flexible fiber rheology. Journal of Chemical Physics, 136, 064901(2012)
[30] Español, P., Serrano, M., Pagonabarraga, I., and Zúñiga, I. Energy-conserving coarse-graining of complex molecules. Soft Matter, 12, 4821-4837(2016)
[31] Landau, L. D. and Lifshitz, E. M. Fluid Mechanics, Pergamon Press, Pergamon (1959)
[32] Warren, P. B. Dissipative particle dynamics. Current Opinion in Colloid & Interface Science, 3, 620-624(1998)
[33] Español, P. Statistical mechanics of coarse-graining. Lecture Notes in Physics, 640, 2256-2256(2004)
[34] Pivkin, I. V., Caswell, B., and Karniadakis, G. E. Dissipative particle dynamics. Reviews in Computational Chemistry, 27, 85-110(2010)
[35] Moeendarbary, E., Ng, T. Y., and Zangeneh, M. Dissipative particle dynamics in soft matter and polymeric applications-a review. International Journal of Applied Mechanics, 2, 161-190(2010)
[36] Guigas, G., Morozova, D., and Weiss, M. Exploring membrane and protein dynamics with dissipative particle dynamics. Advances in Protein Chemistry and Structural Biology, 85, 143-182(2011)
[37] Lu, Z. Y. and Wang, Y. L. An introduction to dissipative particle dynamics. Methods in Molecular Biology, 924, 617-633(2013)
[38] Ghoufi, A., Emile, J., and Malfreyt, P. Recent advances in many body dissipative particles dynamics simulations of liquid-vapor interfaces. European Physical Journal E, 36, 10(2013)
[39] Liu, M. B., Liu, G. R., Zhou, L. W., and Chang, J. Z. Dissipative particle dynamics (DPD):an overview and recent developments. Archives of Computational Methods in Engineering, 22, 529-556(2014)
[40] Groot, R. D. and Warren, P. B. Dissipative particle dynamics:bridging the gap between atomistic and mesoscopic simulation. Journal of Chemical Physics, 107, 4423-4435(1997)
[41] Marsh, C. A., Backx, G., and Ernst, M. H. Static and dynamic properties of dissipative particle dynamics. Physical Review E, 56, 1676-1691(1997)
[42] Moshfegh, A. and Jabbarzadeh, A. Dissipative particle dynamics:effects of parameterization and thermostating schemes on rheology. Soft Materials, 13, 106-117(2015)
[43] Qiao, R. and He, P. Mapping of dissipative particle dynamics in fluctuating hydrodynamics simulations. The Journal of Chemical Physics, 128, 126101(2008)
[44] Moshfegh, A. and Jabbarzadeh, A. Calibration of dissipative particle dynamics method to study rheology of dense suspensions. Applied Mechanics & Materials, 846, 163-168(2016)
[45] Pivkin, I. V. and Karniadakis, G. E. Coarse-graining limits in open and wall-bounded dissipative particle dynamics systems. The Journal of Chemical Physics, 124, 184101(2006)
[46] Füchslin, R. M., Fellermann, H., Eriksson, A., and Ziock, H. J. Coarse graining and scaling in dissipative particle dynamics. The Journal of Chemical Physics, 130, 214102(2009)
[47] Pagonabarraga, I. and Frenkel, D. Dissipative particle dynamics for interacting systems. The Journal of Chemical Physics, 115, 5015-5026(2001)
[48] Avalos, J. B. and Mackie, A. D. Dissipative particle dynamics with energy conservation. International Journal of Modern Physics C, 9, 1329-1338(1997)
[49] Español, P. Dissipative particle dynamics with energy conservation. Europhysics Letters, 40, 631-636(1997)
[50] Español, P. Fluid particle dynamics:a synthesis of dissipative particle dynamics and smoothed particle dynamics. Europhysics Letters, 39, 605-610(1997)
[51] Español, P. Fluid particle model. Physical Review E, 57, 2930-2948(1998)
[52] Flekkoy, E. G., Coveney, P. V., and de Fabritiis, G. Foundations of dissipative particle dynamics. Physical Review E, 62, 2140-2157(2000)
[53] Li, Z., Bian,X., Caswell, B., and Karniadakis, G. E. Construction of dissipative particle dynamics models for complex fluids via the Mori-Zwanzig formulation. Soft Matter, 10, 8659-8672(2014)
[54] Kinjo, T. and Hyodo, S. Equation of motion for coarse-grained simulation based on microscopic description. Physical Review E, 75, 051109(2007)
[55] Hijón, C., Español, P., Vanden-Eijnden, E., and Delgado-Buscalioni, R. Mori-Zwanzig formalism as a practical computational tool. Faraday Discussions, 144, 301-322(2010)
[56] Español, P. Hydrodynamics from dissipative particle dynamics. Physical Review E, 52, 1734-1742(1995)
[57] Adams, N. A. and Hickel, S. Implicit Large-Eddy Simulation:Theory and Application, Springer Berlin Heidelberg, Berlin, 743-750(2009)
[58] Götze, I. O., Noguchi, H., and Gompper, G. Relevance of angular momentum conservation in mesoscale hydrodynamics simulations. Physical Review E, 76, 046705(2007)
[59] Hu, X. Y. and Adams, N. A. Angular-momentum conservative smoothed particle dynamics for incompressible viscous flows. Physics of Fluids, 18, 101702(2006)
[60] Cummins, S. J. and Rudman, M. An SPH projection method. Journal of Computational Physics, 152, 584-607(1999)
[61] Monaghan, J. J. Smoothed particle hydrodynamics and its diverse applications. Annual Review of Fluid Mechanics, 44, 323-346(2012)
[62] Bian, X. and Ellero, M. A splitting integration scheme for the SPH simulation of concentrated particle suspensions. Computer Physics Communications, 185, 53-62(2014)
[63] Vázquez-Quesada, A. and Ellero, M. Rheology and microstructure of non-colloidal suspensions under shear studied with smoothed particle hydrodynamics. Journal of Non-Newtonian Fluid Mechanics, 233, 37-47(2016)
[64] Müller, K., Fedosov, D. A., and Gompper, G. Smoothed dissipative particle dynamics with angular momentum conservation. Journal of Computational Physics, 281, 301-315(2015)
[65] De Groot, S. R. and Mazur, P. Non-Equilibrium Thermodynamics, North Holland Publishing Company, Amsterdam (1964)
[66] Koumoutsakos, P. Multiscale flow simulations using particles. Annual Review of Fluid Mechanics, 37, 457-487(2005)
[67] Quinlan, N. J., Basa, M., and Lastiwka, M. Truncation error in mesh-free particle methods. International Journal for Numerical Methods in Engineering, 66, 2064-2085(2006)
[68] Ellero, M. and Adams, N. A. SPH simulations of flow around a periodic array of cylinders confined in a channel. International Journal for Numerical Methods in Engineering, 86, 1027-1040(2011)
[69] Litvinov, S., Hu, X. Y., and Adams, N. A. Towards consistence and convergence of conservative SPH approximations. Journal of Computational Physics, 301, 394-401(2015)
[70] Hockney, R. W. and Eastwood, J. W. Computer Simulation Using Particles, Taylor & Francis, Inc., Bristol (1988)
[71] Kong, Y., Manke, C. W., Madden, W. G., and Schlijper, A. G. Effect of solvent quality on the conformation and relaxation of polymers via dissipative particle dynamics. Journal of Chemical Physics, 107, 592-602(1997)
[72] Fan, X. J., Phan-Thien, N. N., Yong, N. T., Wu, X. H., and Xu, D. Microchannel flow of a macromolecular suspension. Physics of Fluids, 15, 11-21(2003)
[73] Symeonidis, V., Karniadakis, G. E., and Caswell, B. Dissipative particle dynamics simulations of polymer chains:scaling laws and shearing response compared to DNA experiments. Physical Review Letters, 95, 1-4(2005)
[74] Mao, J. L., Yao, Y., Zhou, Z. W., and Hu, G. H. Polymer translocation through nanopore under external electric field:dissipative particle dynamics study. Applied Mathematics and Mechanics (English Edition), 36(12), 1581-1592(2015) https://doi.org/10.1007/s10483-015-2062-6
[75] Phan-Thien, N., Mai-Duy, N., and Khoo, B. C. A spring model for suspended particles in dissipative particle dynamics. Journal of Rheology, 58, 839-867(2014)
[76] Zhou, L. W., Zhang, Y. Q., Deng, X. L., and Liu, M. B. Dissipative particle dynamics simulation of flow through periodic arrays of circular micropillar. Applied Mathematics and Mechanics (English Edition), 37(11), 1431-1440(2016) https://doi.org/10.1007/s10483-016-2091-9
[77] Khoo, B. C. Studies on liquid-liquid interfacial tension with standard dissipative particle dynamics method. Molecular Simulation, 41, 1166-1176(2015)
[78] Pivkin, I. V. and Karniadakis, G. E. Accurate coarse-grained modeling of red blood cells. Physical Review Letters, 101, 1-4(2008)
[79] Bow, H., Pivkin, I. V., Diez-Silva, M., Goldfless, S. J., Dao, M., Niles, J. C., Suresh, S., and Han, J. A microfabricated deformability-based flow cytometer with application to malaria. Lab on a Chip, 11, 1065-1073(2011)
[80] Ye, T., Phan-Thien, N., Khoo, B. C., and Lim, C. T. Numerical modelling of a healthy/malariainfected erythrocyte in shear flow using dissipative particle dynamics method. Journal of Applied Physics, 115, 224701(2014)
[81] Le-Cao, K., Phan-Thien, N., Khoo, B. C., and Mai-Duy, N. A dissipative particle dynamics model for thixotropic materials exhibiting pseudo-yield stress behaviour. Journal of Non-Newtonian Fluid Mechanics, 241, 1-13(2017)
[82] Fedosov, D. A., Pan, W. X., Caswell, B., Gompper, G., and Karniadakis, G. E. Predicting human blood viscosity in silico. Proceedings of the National Academy of Sciences of the United States of America, 108, 7-9(2011)
[83] Katanov, D., Gompper, G., and Fedosov, D. A. Microvascular blood flow resistance:role of red blood cell migration and dispersion. Microvascular Research, 99, 57-66(2015)
[84] Ye, T., Phan-Thien, N., and Lim, C. T. Particle-based simulations of red blood cells-a review. Journal of Biomechanics, 49, 2255-2266(2015)
[85] Ye, T., Phan-Thien, N., Lim, C. T., Peng, L., and Shi, H. X. Hybrid smoothed dissipative particle dynamics and immersed boundary method for simulation of red blood cells in flows. Physical Review E, 95, 063314(2017)
[86] Hu, X. Y. and Adams, N. A. A multi-phase sph method for macroscopic and mesoscopic flows. Journal of Computational Physics, 213, 844-861(2006)
[87] Lei, H., Baker, N. A., Wu, L., Schenter, G. K., Mundy, C. J., and Tartakovsky, A. M. Smoothed dissipative particle dynamics model for mesoscopic multiphase flows in the presence of thermal fluctuations. Physical Review E, 94, 023304(2016)
[88] Dai, S. C., Bertevas, E., Qi, F. Z., and Tanner, R. I. Viscometric functions for noncolloidal sphere suspensions with newtonian matrices. Journal of Rheology, 57, 493-510(2013)
[89] Sierou, A. and Brady, J. F. Rheology and microstructure in concentrated noncolloidal suspensions. Journal of Rheology, 46, 1031-1056(2002)
[90] Vázquez-Quesada, A., Tanner, R. I., and Ellero, M. Shear thinning of noncolloidal suspensions. Physical Review Letters, 117, 108001(2016)
[91] Vázquez-Quesada, A., Ellero, M., and Español, P. An SPH-based particle model for computational microrheology. Microfluid and Nanofluidics, 13, 249-260(2012)
[92] Öttinger, H. C. Complex Fluids, John Wiley Sons, Inc., New York (2005)
[93] Donev A., Vanden-Eijnden, E., Garcia, A., and Bell, J. On the accuracy of explicit finitevolume schemes for fluctuating hydrodynamics. Communications in Applied Mathematics and Computational Science, 5, 149-197(2010)
[94] Radhakrishnan, R., Uma, B., Liu, J., Ayyaswamy, P. S., and Eckmann, D. M. Temporal multiscale approach for nanocarrier motion with simultaneous adhesion and hydrodynamic interactions in targeted drug delivery. Journal of Computational Physics, 244, 252-263, (2013)
[95] Donev, A., Fai, T. G., and Vanden-Eijnden, E. A reversible mesoscopic model of diffusion in liquids:from giant fluctuations to Fick's law. Journal of Statistical Mechanics:Theory and Experiment, 2014, P04004(2013)
[96] Plunkett, P., Hu, J., Siefert, C., and Atzberger, P. J. Spatially adaptive stochastic methods for fluid-structure interactions subject to thermal fluctuations in domains with complex geometries. Journal of Computational Physics, 277, 121-137(2014)
[97] Donev, A. and Vanden-Eijnden, E. Dynamic density functional theory with hydrodynamic interactions and fluctuations. The Journal of Chemical Physics, 140, 234115(2014)
[98] Padding, J. and Louis, A. Hydrodynamic interactions and Brownian forces in colloidal suspensions:Coarse-graining over time and length scales. Physical Review E, 74, 031402(2006)
[99] Ellero, M., Serrano, M., Espanol, P., and Español, P. Incompressible smoothed particle hydrodynamics. Journal of Computational Physics, 226, 1731-1752(2007)
[100] Hu, X. Y. and Adams, N. A. An incompressible multi-phase SPH method. Journal of Computational Physics, 227, 264-278(2007)
[101] Van Liedekerke, P., Smeets, B., Odenthal, T., Tijskens, E., and Ramon, H. Solving microscopic flow problems using Stokes equations in SPH. Computer Physics Communications, 184, 1686-1696(2013)
[102] Sbalzarini, I. F., Walther, J. H., Bergdorf, M., Hieber, S. E., Kotsalis, E. M., and Koumoutsakos, P. PPM-a highly efficient parallel particle-mesh library for the simulation of continuum systems. Journal of Computational Physics, 215, 566-588(2006)
[103] Español, P. and Donev, A. Coupling a nano-particle with isothermal fluctuating hydrodynamics:coarse-graining from microscopic to mesoscopic dynamics. Journal of Chemical Physics, 143, 234104(2015) |