[1] Landau, L. D. and Lifshitz, E. M. Fluid Mechanics, 1st ed., Pergamon Press, Oxford (1959) [2] Hoogerbrugge, P. J. and Koelman, J. M. V. A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhysics Letters, 19(3), 155-160(1992) [3] Español, P. and Warren, P. Statistical mechanics of dissipative particle dynamics. Europhysics Letters, 30(4), 191-196(1995) [4] Groot, R. D. and Warren, P. B. Dissipative particle dynamics:bridging the gap between atomistic and mesoscopic simulation. Journal of Chemical Physics, 107(11), 4423-4435(1997) [5] Pan, W., Caswell, B., and Karniadakis, G. E. Rheology, microstructure and migration in Brownian colloidal suspensions. Langmuir, 26(1), 133-142(2010) [6] Fedosov, D. A., Caswell, B., and Karniadakis, G. E. A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. Biophysical Journal, 98(10), 2215-2225(2010) [7] Hijón, C., Español, P., Vanden-Eijnden, E., and Delgado-Buscalioni, R. Mori-Zwanzig formalism as a practical computational tool. Faraday Discussions, 144, 301-322(2010) [8] Li, Z., Bian, X., Li, X., and Karniadakis, G. E. Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism. Journal of Chemical Physics, 143(24), 243128(2015) [9] Mori, H. Transport, collective motion, and Brownian motion. Progress of Theoretical Physics, 33(3), 423-455(1965) [10] Zwanzig, R. Ensemble method in the theory of irreversibility. Journal of Chemical Physics, 33(5), 1338-1341(1960) [11] Español, P. and Warren, P. B. Perspective:dissipative particle dynamics. Journal of Chemical Physics, 146(15), 150901(2017) [12] Marsh, C., Backx, G., and Ernst, M. H. Static and dynamic properties of dissipative particle dynamics. Physical Review E, 56(2), 1676-1691(1997) [13] Marsh, C. Theoretical Aspects of Dissipative Particle Dynamics, Ph. D. dissertation, University of Oxford (1998) [14] Ripoll, M., Ernst, M. H., and Español, P. Large scale and mesoscopic hydrodynamics for dissipative particle dynamics. Journal of Chemical Physics, 115(15), 7271-7284(2001) [15] Español, P. and Revenga, M. Smoothed dissipative particle dynamics. Physical Review E, 67(2), 026705(2003) [16] Lucy, L. B. A numerical approach to the testing of the fission hypothesis. Astronomical Journal, 82, 1013-1024(1977) [17] Gingold, R. A. and Monaghan, J. J. Smoothed particle hydrodynamics:theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 181(3), 375-389(1977) [18] Ottinger, H. C. and Grmela, M. Dynamics and thermodynamics of complex fluids, Ⅱ, illustrations öf a general formalism. Physical Review E, 56(6), 6633-6655(1997) [19] Henry, E., Holm, S. H., Zhang, Z., Beech, J. P., Tegenfeldt, J. O., Fedosov, D. A., and Gompper, G. Sorting cells by their dynamical properties. Scientific Reports, 6, 34375(2016) [20] Bian, X., Litvinov, S., Qian, R., Ellero, M., and Adams, N. A. Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics. Physics of Fluids (1994-present), 24(1), 012002(2012) [21] Litvinov, S., Ellero, M., Hu, X., and Adams, N. A. Smoothed dissipative particle dynamics model for polymer molecules in suspension. Physical Review E, 77(6), 066703(2008) [22] Vázquez-Quesada, A., Ellero, M., and Español, P. Smoothed particle hydrodynamic model for viscoelastic fluids with thermal fluctuations. Physical Review E, 79(5), 056707(2009) [23] Kulkarni, P. M., Fu, C. C., Shell, M. S., and Leal, L. G. Multiscale modeling with smoothed dissipative particle dynamics. Journal of Chemical Physics, 138(23), 234105(2013) [24] Lei, H., Mundy, C. J., Schenter, G. K., and Voulgarakis, N. K. Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics. Journal of Chemical Physics, 142(19), 194504(2015) [25] Soddemann, T., Dünweg, B., and Kremer, K. Dissipative particle dynamics:a useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations. Physical Review E, 68(4), 046702(2003) [26] Yong, X. and Zhang, L. T. Thermostats and thermostat strategies for molecular dynamics simulations of nanofluidics. Journal of Chemical Physics, 138(8), 084503(2013) [27] Junghans, C., Praprotnik, M., and Kremer, K. Transport properties controlled by a thermostat:an extended dissipative particle dynamics thermostat. Physical Review E, 4(1), 156-161(2007) [28] Español, P. and Serrano, M. Dynamical regimes in the dissipative particle dynamics model. Physical Review E, 59(6), 6340-6347(1999) [29] Haworth, D. C. and Pope, S. B. A generalized Langevin model for turbulent flows. Physics of Fluids, 29(2), 387-405(1986) [30] Jenny, P., Torrilhon, M., and Heinz, S. A solution algorithm for the fluid dynamic equations based on a stochastic model for molecular motion. Journal of Computational Physics, 229(4), 1077-1098(2010) [31] Boon, J. P. and Yip, S. Molecular Hydrodynamics, Dover Publications, New York (1992) [32] Palmer, B. J. Transverse-current autocorrelation-function calculations of the shear viscosity for molecular liquids. Physical Review E, 49(1), 359-366(1994) [33] Azarnykh, D., Litvinov, S., Bian, X., and Adams, N. A. Determination of macroscopic transport coefficients of a dissipative particle dynamics solvent. Physical Review E, 93(1), 013302(2016) [34] De Fabritiis, G., Serrano, M., Delgado-Buscalioni, R., and Coveney, P. V. Fluctuating hydrodynamic modeling of fluids at the nanoscale. Physical Review E, 75(2), 026307(2007) [35] Bell, J. B., Garcia, A. L., and Williams, S. A. Numerical methods for the stochastic LandauLifshitz Navier-Stokes equations. Physical Review E, 76(1), 016708(2007) [36] Bian, X., Deng, M., Tang, Y. H., and Karniadakis, G. E. Analysis of hydrodynamic fluctuations in heterogeneous adjacent multidomains in shear flow. Physical Review E, 93(3), 033312(2016) [37] Bian, X., Deng, M., and Karniadakis, G. E. Analytical and computational studies of correlations of hydrodynamic fluctuations in shear flow. Computer Physics Communications, 23(1), 93-117(2018) [38] Huang, C. C., Gompper, G., and Winkler, R. G. Hydrodynamic correlations in multiparticle collision dynamics fluids. Physical Review E, 86(5), 056711(2012) [39] Varghese, A., Huang, C. C., Winkler, R. G., and Gompper, G. Hydrodynamic correlations in shear flow:multiparticle-collision-dynamics simulation study. Physical Review E, 92(5), 053002(2015) [40] Onsager, L. Reciprocal relations in irreversible processes, I. Physical Review, 37(4), 405-426(1931) [41] Berne, B. J. and Pecora, R. Dynamic Light Scattering:With Applications to Chemistry, Biology, and Physics, Dover Publications, New York (2000) [42] Langevin, P. Sur la théorie du mouvement brownien. Comptes Rendus de l'Académie des Sciences (Paris), 146, 530-533(1908) [43] Chandrasekhar, S. Stochastic problems in physics and astronomy. Reviews of Modern Physics, 15(1), 1-89(1943) [44] Bian, X., Kim, C., and Karniadakis, G. E. 111 years of Brownian motion. Soft Matter, 12(30), 6331-6346(2016) [45] Gorji, M. H., Torrilhon, M., and Jenny, P. Fokker-Planck model for computational studies of monatomic rarefied gas flows. Journal of Fluid Mechanics, 680, 574-601(2011) [46] Beresnev, S. A., Chernyak, V. G., and Fomyagin, G. A. Motion of a spherical particle in a rarefied gas, part 2, drag and thermal polarization. Journal of Fluid Mechanics, 219, 405-421(1990) [47] Li, T. and Raizen, M. G. Brownian motion at short time scales. Annalen der Physik, 525(4), 281-295(2013) [48] Hickel, S., Adams, N. A., and Domaradzki, J. A. An adaptive local deconvolution method for implicit LES. Journal of Computational Physics, 213(1), 413-436(2006) [49] Schranner, F. S., Hu, X., and Adams, N. A. A physically consistent weakly compressible highresolution approach to underresolved simulations of incompressible flows. Computers and Fluids, 86, 109-124(2013) [50] Wang, P., Tartakovsky, A. M., and Tartakovsky, D. M. Probability density function method for Langevin equations with colored noise. Physical Review Letters, 110(14), 140602(2013) [51] Azarnykh, D., Litvinov, S., and Adams, N. A. Numerical methods for the weakly compressible generalized Langevin model in Eulerian reference frame. Journal of Computational Physics, 314, 93-106(2016) [52] McLennan, J. A. Correlation functions for dilute systems. Physics of Fluids (1958-1988), 9(8), 1581-1589(1966) |