[1] BO, Z. and LAGOUDAS, D. C. Thermomechanical modeling of polycrystalline SMAs under cyclic loading, part IV:modeling of minor hysteresis loops. International Journal of Engineering Science, 37, 1205-1249(1999) [2] MCKELVEY, A. L. and RITCHIE, R. O. Fatigue-crack growth behavior in the superelastic and shape-memory alloy Nitinol. Metallurgical and Materials Transactions A, 32, 731-743(2001) [3] PRAHLAD, H. and CHOPRA, I. Development of a strain-rate dependent model for uniaxial loading of SMA wires. Journal of Intelligent Material Systems and Structures, 14, 429-442(2003) [4] KIM, H. Y., IKEHARA, Y., KIM, J. I., HOSODA, H., and MIYAZAKI, S. Martensitic transformation, shape memory effect and superelasticity of Ti-Nb binary alloys. Acta Materialia, 54, 2419-2429(2006) [5] MIYAZAKI, S., KIM, H. Y., and HOSODA, H. Development and characterization of Ni-free Ti-base shape memory and superelastic alloys. Materials Science and Engineering:A, 438, 18-24(2006) [6] LAGOUDAS, D. C. Shape Memory Alloys:Modeling and Engineering Applications, Springer Science & Business Media, Berlin (2008) [7] KOCKAR, B., KARAMAN, I., KIM, J. I., CHUMLYAKOV, Y. I., SHARP, J., and YU, C. J. M. Thermomechanical cyclic response of an ultrafine-grained NiTi shape memory alloy. Acta Materialia, 56, 3630-3646(2008) [8] MORIN, C., MOUMNI, Z., and ZAKI, W. Thermomechanical coupling in shape memory alloys under cyclic loadings:experimental analysis and constitutive modeling. International Journal of Plasticity, 27, 1959-1980(2011) [9] PATOOR, E., LAGOUDAS, D. C., ENTCHEV, P., BRINSON, L. C., and GAO, X. Shape memory alloys, part I:general properties and modeling of single crystals. Mechanics of Materials, 38, 391-429(2006) [10] LAGOUDAS, D. C., ENTCHEV, P. B., POPOV, P., PATOOR, E., BRINSON, L. C., and GAO, X. Shape memory alloys, part II:modeling of polycrystals. Mechanics of Materials, 38, 430-462(2006) [11] HUO, Y. Z. A mathematical model for the hysteresis in shape memory alloys. Continuum Mechanics and Thermodynamics, 1, 283-303(1989) [12] HUO, Y. Z. Internal variables and thermodynamic modelling of pseudoelasticity. Applied Mathematics and Mechanics (English Edition), 17, 969-978(1996) https://doi.org/10.1007/BF00147134 [13] AURICCHIO, F., TAYLOR, R. L., and LUBLINER, J. Shape-memory alloys:macromodelling and numerical simulations of the superelastic behavior. Computer Methods in Applied Mechanics and Engineering, 146, 281-312(1997) [14] ZHU, Y. G., LÜ, H. X., and YANG, D. Z. A new model of shape memory alloys. Applied Mathematics and Mechanics (English Edition), 23, 1009-1015(2002) https://doi.org/10.1007/BF02437711 [15] BOUVET, C., CALLOCH, S., and LEXCELLENT, C. A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings. European Journal of Mechanics A:Solids, 23, 37-61(2004) [16] ZHU, Y. P. and DUI, G. S. A macro-constitutive model of polycrystalline NiTi SMAs including tensile compressive asymmetry and torsion pseudoelastic behaviors. International Journal of Engineering Scienc, 48, 2099-2106(2010) [17] DESROCHES, R., MCCORMICK, J., and DELEMONT, M. Cyclic properties of superelastic shape memory alloy wires and bars. Journal of Structural Engineering, 130, 38-46(2004) [18] ARGHAVANI, J., AURICCHIO, F., NAGHDABADI, R., REALI, A., and SOHRABPOUR, S. A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings. International Journal of Plasticity, 26, 976-991(2010) [19] XIA, K., PAN, T., and LIU, S. Three dimensional large deformation analysis of phase transformation in shape memory alloys. Applied Mathematics and Mechanics (English Edition), 31, 1261-1272(2010) https://doi.org/10.1007/s10483-010-1359-7 [20] SONG, Q. Z. and TANG, Z. P. Combined stress waves with phase transition in thin-walled tubes. Applied Mathematics and Mechanics (English Edition), 35, 285-296(2014) https://doi.org/10.1007/s10483-014-1791-7 [21] LI, Y. F., ZENG, X. G., and CHEN, H. Y. A three-dimensional dynamic constitutive model and its finite element implementation for NiTi alloy based on irreversible thermodynamics. Acta Mechanica Solida Sinica, 32, 356-366(2019) [22] ZHOU, B., ZHENG, X. Y., KANG, Z. T., and XUE, S. F. Modeling size-dependent thermo-mechanical behaviors of shape memory polymer Bernoulli-Euler microbeam. Applied Mathematics and Mechanics (English Edition), 40, 1531-1546(2019) https://doi.org/10.1007/s10483-019-2540-5 [23] PAIVA, A., SAVI, M. A., BRAGA, A., and PACHECO, P. A constitutive model for shape memory alloys considering tensile-compressive asymmetry and plasticity. International Journal of Solids and Structures, 42, 3439-3457(2005) [24] AURICCHIO, F., REALI, A., and STEFANELLI, U. A three-dimensional model describing stress-induced solid phase transformation with permanent inelasticity. International Journal of Plasticity, 23, 207-226(2007) [25] HARTL, D. J. and LAGOUDAS, D. C. Constitutive modeling and structural analysis considering simultaneous phase transformation and plastic yield in shape memory alloys. Smart Materials and Structures, 18, 104017-104033(2009) [26] ZHOU, B. A macroscopic constitutive model of shape memory alloy considering plasticity Mechanics of Materials, 48, 71-81(2012) [27] PENG, X. H., CHEN, B., CHEN, X., WANG, J., and WANG, H. Y. A constitutive model for transformation, reorientation and plastic deformation of shape memory alloys. Acta Mechanica Solida Sinica, 25, 285-298(2012) [28] YU, C., KANG, G. Z., and KAN, Q. H. Crystal plasticity based constitutive model of NiTi shape memory alloy considering different mechanisms of inelastic deformation. International Journal of Plasticity, 54, 132-162(2014) [29] XU, X., XU, B., JIANG, H. M., KANG, G. Z., and KAN, Q. H. A multi-mechanism model describing reorientation and reorientation-induced plasticity of NiTi shape memory alloy. Acta Mechanica Solida Sinica, 31, 445-458(2018) [30] XIAO, H., BRUHNS, O. T., and MEYERS, A. Finite elastoplastic J2-flow models with strain recovery effects. Acta Mechanica, 210, 13-25(2010) [31] XIAO, H., BRUHNS, O. T., and MEYERS, A. Phenomenological elastoplasticity view on strain recovery loops characterizing shape memory materials. Zeitschrift für Angewandte Mathematik und Mechanik, 90, 544-564(2010) [32] XIAO, H. Pseudo-elastic hysteresis out of recoverable finite elastoplastic flows. International Journal of Plasticity, 41, 82-96(2013) [33] XIAO, H. An explicit, straightforward approach to modeling SMA pseudo-elastic hysteresis. International Journal of Plasticity, 53, 228-240(2014) [34] WANG, X. M., WANG, Z. L., and XIAO, H. SMA pseudo-elastic hysteresis with tension-compression asymmetry:explicit simulation based on elastoplasticity models. Continuum Mechanics and Thermodynamics, 27, 959-970(2015) [35] XIAO, H., WANG, X. M., WANG, Z. L., and YIN, Z. N. Explicit, comprehensive modeling of multi-axial finite strain pseudo-elastic SMAs up to failure. International Journal of Solids and Structures, 88-89, 215-226(2016) [36] ZHAN, L., WANG, X. M., WANG, S. Y., XI, H. F., and XIAO, H. An explicit and accurate approach toward simulating plastic-to-pseudoelastic transitions of SMAs under multiple loading and unloading cycles. International Journal of Solids and Structures, 185-186, 104-115(2020) [37] XIAO, H., BRUHNS, O. T., and MEYERS, A. Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mechanica, 124, 89-105(1997) [38] XIAO, H., BRUHNS, O. T., and MEYERS, A. Strain rates and material spins. Journal of Elasticity, 52, 1-41(1997) [39] XIAO, H., BRUHNS, O. T., and MEYERS, A. On objective corotational rates and their defining spin tensors. International Journal of Solids and Structures, 35, 4001-4014(1997) [40] XIAO, H. Thermo-coupled elastoplasticity model with asympototic loss of the material strength. International Journal of Plasticity, 63, 211-228(2014) [41] XIAO, H., BRUHNS, O. T., and MEYERS, A. Thermodynamic laws and consistent Eulerian formulations of finite elastoplasticity with thermal effects. Journal of the Mechanics and Physics of Solids, 55, 338-365(2007) [42] WANG, W., FANG, C., and LIU, J. Large size superelastic sma bars:heat treatment strategy, mechanical property and seismic application. Smart Materials and Structures, 25, 075001(2016) |