[1] STUDART, A. R. Towards high-performance bioinspired composites. Advanced Materials, 24(37), 5024-5044(2012) [2] MALIK, I. A., MIRKHALAF, M., and BARTHELAT, F. Bio-inspired "jigsaw"-like interlocking sutures:modeling, optimization, 3D printing and testing. Journal of the Mechanics and Physics of Solids, 102, 224-238(2017) [3] SPIESZ, E. M., SCHMIEDEN, D. T., GRANDE, A. M., LIANG, K., SCHWIEDRZIK, J., NATALIO, F., MICHLER, J., GARCIA, S. J., AUBIN-TAM, M., and MEYER, A. S. Bacterially produced, nacre-inspired composite materials. Small, 15(22), 1805312(2019) [4] FINNEMORE, A., CUNHA, P., SHEAN, T., VIGNOLINI, S., GULDIN, S., OYEN, M., and STEINER, U. Biomimetic layer-by-layer assembly of artificial nacre. Nature Communications, 3(1), 966(2012) [5] WEGST, U. G. K., BAI, H., SAIZ, E., TOMSIA, A. P., and RITCHIE, R. O. Bioinspired structural materials. Nature Materials, 14(1), 23-36(2015) [6] GAO, H. L., CHEN, S. M., MAO, L. B., SONG, Z. Q., YAO, H. B., CÖLFEN, H., LUO, X. S., ZHANG, F., PAN, Z., MENG, Y. F., NI, Y., and YU, S. H. Mass production of bulk artificial nacre with excellent mechanical properties. Nature Communications, 8(1), 287(2017) [7] KRAUSS, S., MONSONEGO-ORNAN, E., ZELZER, E., FRATZL, P., and SHAHAR, R. Mechanical function of a complex three-dimensional suture joining the bony elements in the shell of the red-eared slider turtle. Advanced Materials, 21(4), 407-412(2009) [8] SUN, L. Y., CHEN, Z. Y., BIAN, F. K., and ZHAO, Y. J. Bioinspired soft robotic caterpillar with cardiomyocyte drivers. Advanced Functional Materials, 30(6), 1907820(2020) [9] WANG, K., LOU, Z., WANG, L. L., ZHAO, L. J., ZHAO, S. F., WANG, D. Y., HAN, W., JIANG, K., and SHEN, G. Z. Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano, 13(8), 9139-9147(2019) [10] YU, J. J., ZHANG, K., and DENG, Y. Recent progress in pressure and temperature tactile sensors:principle, classification, integration and outlook. Soft Science, 1(1), 6(2021) [11] CONNORS, M., YANG, T., HOSNY, A., DENG, Z. F., YAZDANDOOST, F., MASSAADI, H., EERNISSE, D., MIRZAEIFAR, R., DEAN, M. N., WEAVER, J. C., ORTIZ, C., and LI, L. Bioinspired design of flexible armor based on chiton scales. Nature Communications, 10(1), 5413(2019) [12] RITCHIE, R. O. The conflicts between strength and toughness. Nature Materials, 10(11), 817-822(2011) [13] LI, Y. N., ORTIZ, C., and BOYCE, M. C. Stiffness and strength of suture joints in nature. Physical Review E, 84(6), 062904(2011) [14] LEE, N., HORSTEMEYER, M. F., RHEE, H., NABORS, B., LIAO, J., and WILLIAMS, L. N. Hierarchical multiscale structure-property relationships of the red-bellied woodpecker (Melanerpes carolinus) beak. Journal of the Royal Society Interface, 11(96), 20140274(2014) [15] LI, Y. N., ORTIZ, C., and BOYCE, M. C. Bioinspired, mechanical, deterministic fractal model for hierarchical suture joints. Physical Review E, 85(3), 031901(2012) [16] ACHRAI, B., BAR-ON, B., and WAGNER, H. D. Bending mechanics of the red-eared slider turtle carapace. Journal of the Mechanical Behavior of Biomedical Materials, 30, 223-233(2014) [17] BAHLS, L., POTAPOVA, M., FALLU, M. A., and PIENITZ, R. Aulacoseira canadensis and Aulacoseira crassipunctata (Bacillariophyta) in North America. Diatom Taxonomy, Ultrastructure and Ecology:Modern Methods and Timeless, J. Cramer in der Gebrüder Borntraeger Verlagsbuchhandlung, Stuttart, 135, 167-184(2009) [18] SONG, J., REICHERT, S., KALLAI, I., GAZIT, D., WUND, M., BOYCE, M. C., and ORTIZ, C. Quantitative microstructural studies of the armor of the marine threespine stickleback (gasterosteus aculeatus). Journal of Structural Biology, 171(3), 318-331(2010) [19] RIVERA, J., HOSSEINI, M. S., RESTREPO, D., MURATA, S., VASILE, D., PARKINSON, D. Y., BARNARD, H. S., ARAKAKI, A., ZAVATTIERI, P., and KISAILUS, D. Toughening mechanisms of the elytra of the diabolical ironclad beetle. nature, 586(7830), 543-548(2020) [20] MIURA, T., PERLYN, C. A., KINBOSHI, M., OGIHARA, N., KOBAYASHI-MIURA, M., MORRISS-KAY, G. M., and SHIOTA, K. Mechanism of skull suture maintenance and interdigitation. Journal of Anatomy, 215(6), 642-655(2009) [21] GOETZ, A. J., STEINMETZ, D. R., GRIESSHABER, E., ZAEFFERER, S., RAABE, D., KELM, K., IRSEN, S., SEHRBROCK, A., and SCHMAHL, W. W. Interdigitating biocalcite dendrites form a 3-D jigsaw structure in brachiopod shells. Acta Biomaterialia, 7(5), 2237-2243(2011) [22] GAO, C., HASSELDINE, B. P. J., LI, L., WEAVER, J. C., and LI, Y. N. Amplifying strength, toughness, and auxeticity via wavy sutural tessellation in plant seedcoats. Advanced Materials, 30(36), 1800579(2018) [23] ZHANG, Z. Q. and YANG, J. L. Biomechanical dynamics of cranial sutures during simulated impulsive loading. Applied Bionics and Biomechanics, 2015, 596843(2015) [24] LI, Y. N., ORTIZ, C., and BOYCE, M. C. A generalized mechanical model for suture interfaces of arbitrary geometry. Journal of the Mechanics and Physics of Solids, 61(4), 1144-1167(2013) [25] MALIK, I. A. and BARTHELAT, F. Bioinspired sutured materials for strength and toughness:pullout mechanisms and geometric enrichments. International Journal of Solids and Structures, 138, 118-133(2018) [26] LIN, J. D., LEE, J., ÖZCOBAN, H., SCHNEIDER, G. A., and HO, S. P. Biomechanical adaptation of the bone-periodontal ligament (PDL)-tooth fibrous joint as a consequence of disease. Journal of Biomechanics, 47(9), 2102-2114(2014) [27] OGLE, R. C., THOLPADY, S. S., MCGLYNN, K. A., and OGLE, R. A. Regulation of cranial suture morphogenesis. Cells Tissues Organs, 176(1-3), 54-66(2004) [28] YAN, J. and STRENKOWSKI, J. S. A finite element analysis of orthogonal rubber cutting. Journal of Materials Processing Technology, 174(1), 102-108(2006) [29] ELICES, M., GUINEA, G. V., GÓMEZ, J., and PLANAS, J. The cohesive zone model:advantages, limitations and challenges. Engineering Fracture Mechanics, 69(2), 137-163(2002) [30] WU, D., ZHAO, Z. A., WANG, P. D., PEI, Y. M., CHEN, H. S., QI, H. J., and FANG, D. N. Structured interfaces for improving the tensile strength and toughness of stiff/highly stretchable polymer hybrids. Advanced Materials Technologies, 5(11), 2000652(2020) [31] POLLITT, C. C. The anatomy and physiology of the hoof wall. Equine Veterinary Education, 10(6), 318-325(1998) [32] RAYNEAU-KIRKHOPE, D., MAO, Y., and RAUCH, C. Bioinspired hierarchical designs for stiff, strong interfaces between materials of differing stiffness. Physical Review Applied, 10(3), 034016(2018) [33] ACHRAI, B. and WAGNER, H. D. The turtle carapace as an optimized multi-scale biological composite armor-a review. Journal of the Mechanical Behavior of Biomedical Materials, 73, 50-67(2017) [34] CHEN, I. H., YANG, W., and MEYERS, M. A. Leatherback sea turtle shell:a tough and flexible biological design. Acta Biomaterialia, 28, 2-12(2015) [35] KLINGBEIL, W. W. and SHIELD, R. T. Large-deformation analyses of bonded elastic mounts. Zeitschrift für Angewandte Mathematik und Physik, 17(2), 281-305(1966) [36] LIN, S. T., COHEN, T., ZHANG, T., YUK, H., ABEYARATNE, R., and ZHAO, X. H. Fringe instability in constrained soft elastic layers. Soft Matter, 12(43), 8899-8906(2016) [37] HAMDI, A., ABDELAZIZ, M. N., HOCINE, N. A., HEUILLET, P., and BENSEDDIQ, N. A fracture criterion of rubber-like materials under plane stress conditions. Polymer Testing, 25(8), 994-1005(2006) [38] LIU, J. J., CHEN, Z., LIANG, X. Y., HUANG, X. Q., MAO, G. Y., HONG, W., YU, H. H., and QU, S. X. Puncture mechanics of soft elastomeric membrane with large deformation by rigid cylindrical indenter. Journal of the Mechanics and Physics of Solids, 112, 458-471(2018) [39] GENT, A. N. Extensibility of rubber under different types of deformation. Journal of Rheology, 49(1), 271-275(2005) [40] BALKAN, O. and DEMIRER, H. Mechanical properties of glass bead-and wollastonite-filled isotactic-polypropylene composites modified with thermoplastic elastomers. Polymer Composites, 31(7), 1285-1308(2010) [41] SLUIS, O. V. D., HSU, Y. Y., TIMMERMANS, P. H. M., GONZALEZ, M., and HOEFNAGELS, J. P. M. Stretching-induced interconnect delamination in stretchable electronic circuits. Journal of Physics D:Applied Physics, 21(4), 467-478(2011) |