[1] HALL-STOODLEY, L., COSTERTON, J. W., and STOODLEY, P. Bacterial biofilms:from the natural environment to infectious diseases. Nature Reviews Microbiology, 2(2), 95-108(2004) [2] IMRAN, M. and SMITH, H. A model of optimal dosing of antibiotic treatment in biofilm. Mathematical Biosciences and Engineering, 11(3), 547-571(2014) [3] WU, H., MOSER, C., WANG, H. Z., HØIBY, N., and SONG, Z. J. Strategies for combating bacterial biofilm infections. International Journal of Oral Science, 7, 1-7(2015) [4] ANDERL, J. N., FRANKLIN, M. J., and STEWART, P. S. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrobial Agents Chemother, 4(7), 1818-1824(2000) [5] CHAMBLESS, J. D., HUNT, S. M., and STEWART, P. S. A three-dimensional computer model of four hypothetical mechanisms protecting biofilms from antimicrobials. Applied and Environmental Microbiology Journal, 72(3), 2005-2013(2006) [6] MAH, T. C. and O'TOOLE, G. A. Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology, 9(1), 34-39(2001) [7] POULSEN, L. V. Microbial biofilm in food processing. LWT-Food Science and Technology, 32(6), 321-326(1999) [8] STEWART, P. S. and COSTERTON, J. E. Antibiotic resistance of bacteria in biofilms. Lancet, 358, 135-38(2001) [9] ANDERSEN, P. C., BRODBECK, B. V., ODEN, S., SHRINER, A., and LEITE, B. Influence of xylem fluid chemistry on planktonic growth, biofilm formation and aggregation of xylella fastidiosa. FEMS Microbiology Letters, 274(2), 210-217(2007) [10] BJARNSHOLT, T. The role of bacterial biofilms in chronic infections. APMIS, 121(s136), 1-58(2013) [11] VEERACHAMY, S., YARLAGADDA, T., MANIVASAGAM, G., and YARLAGADDA, P. K. Bacterial adherence and biofilm formation on medical implants:a review. Proceedings of the Institution of Mechanical Engineers, Part H:Journal of Engineering in Medicine, 228, 1083-1099(2014) [12] GUPTA, P., SARKAR, S., DAS, B., BHATTACHARJEE, S., and TRIBEDI, P. Biofilm, pathogenesis and prevention-a journey to break the wall:a review. Arch Microbiol, 198, 1-15(2016) [13] PERCIVAL, S. L., SULEMAN, L., VUOTTO, C., and DONELLI, G. Healthcare-associated infections, medical devices and biofilms:risk, tolerance and control. Journal of Medical Microbiol, 64, 323-334(2015) [14] PICIOREANU, C., VAN LOOSDRECHT, M. C. M., and HEIJNEN, J. J. Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnology and Bioengineering, 72(2), 205-218(2001) [15] IQBAL, K., OHL, S. W., KHOO, B. C., NEO, J., FAWZY, A. S., and AMR, S. Effect of highintensity focused ultrasound on enterococcus faecalis planktonic suspensions and biofilms. Ultrasound in Medicine and Biology, 39(5), 825-833(2013) [16] KOO, H., ALLAN, R. N., HOWLIN, R. P., STOODLEY, P., and HALL-STOODLEY, L. Targeting microbial biofilms:current and prospective therapeutic strategies. Nature Reviews Microbiology, 15, 740(2017) [17] BRENNEN, C. E. Cavitation and Bubble Dynamics, Cambridge University Press, Cambridge (2013) [18] PLESSET, M. S. and PROSPERETTI, A. Bubble dynamics and cavitation. Annual Review of Fluid Mechanics, 9, 145-185(1977) [19] LAUTERBORN, W. and METTIN, R. Acoustic cavitation:bubble dynamics in high power ultrasonic fields. Power Ultrasonics, 2015, 37-78(2015) [20] CHAHINE, G. L., KAPAHI, A., CHOI, J. K., and HSIAO, C. T. Modeling of surface cleaning by cavitation bubble dynamics and collapse. Ultrasonics Sonochemistry, 29, 528-549(2016) [21] FELVER, B., KING, D. C., LEA, S. C., PRICE, G. J., and WALMSLEY, A. D. Cavitation occurrence around ultrasonic dental scalers. Ultrasonics Sonochemistry, 16, 692-697(2009) [22] NAKAJIMA, K., NISHIOKA, D., HIRAO, M., SO, M., GOTO, Y., and OGI, H. Drastic acceleration of fibrillation of insulin by transient cavitation bubble. Ultrasonics Sonochemistry, 36, 206-211(2017) [23] OHL, C. D., ARORA, M., IKINK, R., DE-JONG, N., VERSLUIS, M., DELIUS, M, and LOHSE, M. Sonoporation from jetting cavitation bubbles. Biophysical Journal, 91, 4285-4295(2006) [24] PISHCHALNIKOV, Y. A., SAPOZHNIKOV, O. A., BAILEY, M. R., WILLIAMS, J. C., COLONIUS,T., CRUM, L. A., and EVAN, A. P. Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shockwaves. Journal of Endourology, 17, 435-446(2003) [25] ALPKVIST, E. and KLAPPER, I. Description of mechanical response including detachment using a novel particle model of biofilm/flow interaction. Water Science and Technology, 55(8-9), 265-273(2007) [26] COGAN, N. G., CORTEZ, R., and FAUCI, L. Modeling physiological resistance in bacterial biofilms. Bulletin of Mathematical Biology, 67(4), 831-853(2005) [27] DUDDU, R., CHOPP, D. L., and MORAN, B. A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment. Biotechnology and Bioengineering, 103(1), 92-104(2009) [28] EBERL, H. J. and SUDARSAN, R. Exposure of biofilms to slow flow fields:the convective contribution to growth and disinfection. Journal of Theoretical Biology, 253, 788-807(2008) [29] GHASEMI, M., HENSE, B. A., EBERL, H. J., and KUTTLER, C. Simulation-based exploration of quorum sensing triggered resistance of biofilms to antibiotics. Bulletin of Mathematical Biology, 80, 1736-1775(2018) [30] JAYATHILAKE, P. G., GUPTA, P., LI, B., MADSEN, C., OYEBAMIJI, O., and GONZALEZCABALEIRO, R. A mechanistic individual-based model of microbial communities. PLoS One, 12(8), e0181965(2017) [31] KLAPPER, I. and DOCKERY, J. Mathematical description of microbial biofilms. SIAM Review, 52(2), 221-265(2010) [32] SEELUANGSAWAT, P. 3-D Computational Investigation of Viscoelastic Biofilms Using GPUs, Ph. D. dissertation, University of South Carolina, South Carolina (2011) [33] SMITH, B., VAUGHAN, B., and CHOPP, D. The extended finite element method for boundary layer problems in biofilm growth. Communications in Applied Mathematics and Computational Science, 2(1), 35-56(2007) [34] SZOMOLAY, B., KLAPPER, I., and DINDOS, M. Analysis of adaptive response to dosing protocols for biofilm control. SIAM Journal on Applied Mathematics, 70, 3175-3202(2010) [35] TAHERZADEH, D., PICIOREANU, C., and HORN, H. Mass transfer enhancement in moving biofilm structures. Biophysical Journal, 102(7), 1483-1492(2012) [36] VAN-LOOSDRECHT, M. C. M., HEIJNEN, J. J., EBERL, H., KREFT, J., and PICIOREANU, C. Mathematical modelling of biofilm structures. Antonie Van Leeuwenh, 81(1), 245-256(2002) [37] WANG, Q. and ZHANG, T. Review of mathematical models for biofilms. Solid State Communications, 150(21-22), 1009-1022(2010) [38] WANNER, O., EBERL, H. J., VAN LOOSDRECHT, M. C. M., MORGENROTH, E., NOGUERA, D. R., PICIOREANU, C., and RITTMANN, B. E. Mathematical Modelling of Biofilms, IWA Publishing, London (2006) [39] VERHAAGEN, B. and RIVAS, D. F. Measuring cavitation and its cleaning effect. Ultrasonics Sonochemistry, 29, 619-628(2016) [40] GUÉLON, T., MATHIAS, J. D., and STOODLEY P. Advances in Biofilm Mechanics, Springer, Berlin (2011) [41] OHASHI, A. and HARADA, H. A novel concept for evaluation of biofilm adhesion strength by applying tensile force and shear force. Water Science and Technology, 34(5-6), 201-211(1996) [42] STOODLEY, P., CARGO, R., RUPP, C. J., WILSON, S., and KLAPPER, I. Biofilm material properties as related to shear-induced deformation and detachment phenomena. Journal of Industrial Microbiology and Biotechnology, 29(6), 361-367(2002) [43] AGGARWAL, S. and HOZALSKI, R. M. Determination of biofilm mechanical properties from tensile tests performed using a micro-cantilever method. Biofouling, 26(4), 479-486(2010) [44] KORSTGENS, V., FLEMMING, H. C., WINGENDER, J., and BORCHARD, W. Uniaxial compression measurement device for investigation of the mechanical stability of biofilms. Journal of Microbiological Methods, 46(1), 9-17(2001) [45] KORSTGENS, V., FLEMMING, H. C., WINGENDER, J., and BORCHARD, W. Influence of calcium ions on the mechanical properties of a model biofilm of mucoid Pseudomonas aeruginosa. Water Science and Technology, 43(6), 49-57(2001) [46] ZIENKIEWICZ, O. C. Visco-Plasticity, Plasticity, Creep and Visco-plastic Flow, Lecture Notes in Mathematics, Springer, Berlin (1975) [47] YOUNG, F. R. Cavitation, McGraw-Hill, New York (1989) [48] DOINIKOV, A. A. Translational motion of two interacting bubbles in a strong acoustic field. Physical Review E-Statistical Nonlinear and Soft Matter Physics, 64(2), 026301(2001) [49] FONG, S. W., KLASEBOER, E., TURANGAN, C. K., KHOO, B. C., and HUNG, K. C. Numerical analysis of a gas bubble near bio-materials in an ultrasound field. Ultrasound in Medicine and Biology, 32(6), 925-942(2006) [50] GUO, X., CAI, C., XU, G., YANG, Y., TU, J., HUANG, P., and ZHANG, D. Interaction between cavitation microbubble and cell:a simulation of sonoporation using boundary element method (BEM). Ultrasonics Sonochemistry, 39, 863-871(2017) [51] GUO, C. The Relationship Between the Collapsing Cavitation Bubble and Its Microjet Near a Rigid Wall Under an Ultrasound Field, IntechOpen, London (2018) [52] JOHNSEN, E. and COLONIUS, T. Numerical simulations of non-spherical bubble collapse. Journal of Fluid Mechanics, 629, 231-262(2009) [53] MIAO, H. and GRACEWSKI, S. M. Coupled FEM and BEM code for simulating acoustically excited bubbles near deformable structures. Computational Mechanics, 42, 95-106(2008) [54] VYAS, N., MANMI, K., WANG, Q., JADHA, A. J., BARIGOU, M., SAMMONS, R. L., KUEHNE, S. A., and WALMSLEY, A. D. Which parameters affect biofilm removal with acoustic cavitation? a review. Ultrasound in Medicine and Biology, 45(5), 1044-1055(2019) [55] BLAKE, J. R., KEEN, G. S., TONG, R. P., and WILSON, M. Acoustic cavitation:the fluid dynamics of non-spherical bubbles. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 357, 251-267(1999) [56] LAUTERBORN, W. and BOLLE, H. Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. Journal of Fluid Mechanics, 72, 391-399(1975) [57] RAJARATNAM, N. and MAZUREK, K. A. Impingement of circular turbulent jets on rough boundaries. Journal of Hydraulic Research, 43(6), 689-695(2005) [58] BOWER, A. F. Applied Mechanics of Solids, CRC Press, Boca Raton (2009) [59] BORESI, A. P. and SCHMIDT, R. J. Advanced Mechanics of Materials, Wiley, New York (2003) [60] DONLAN, R. M. and COSTERTON, W. J. Biofilms:survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews, 15(2), 167-193(2002) [61] FROST, H. J. and ASHBY, M. F. Deformation-mechanism Maps:the Plasticity and Creep of Metals and Ceramics, Pergamon Press, New York (1982) [62] GLOAG, E. S., GERMAN, G. K., STOODLEY, P., and WOZNIAK, D. J. Viscoelastic properties of Pseudomonas aeruginosa variant biofilms. Scientific Reports, 8, 9691(2018) [63] PICIOREANU, C., BLAUERT, F., HORN, H., and WAGNER, M. Determination of mechanical properties of biofilms by modelling the deformation measured using optical coherence tomography. Water Research, 145, 588-598(2018) [64] AGGARWAL, S., STEWART, P. S., and HOZALSKI, R. M. Biofilm cohesive strength as a basis for biofilm recalcitrance:are bacterial biofilms overdesigned? Microbiology Insights, 8(s2), 29-32(2015) [65] EMERENINI, B., HENSE, B. A., KUTTLER, C., and EBERL, H. J. A mathematical model of quorum sensing induced biofilm detachment. PLoS One, 10(7), e0132385(2015) [66] FREDERICK, M. R., KUTTLER, C., HENSE, B. A., and EBERL, H. J. A mathematical model of quorum sensing regulated EPS production in biofilms. Theoretical Biology and Medical Modelling, 8, 8(2011) [67] EBERL, H. J., PARKER, D. F., and VAN-LOOSDRECHT, C. M. A new deterministic spatiotemporal continuum model for biofilm development. Journal of Theoretical Medicine, 3, 161-175(2001) [68] EBERL, H. J. and DEMARET, L. A finite difference scheme for a degenerated diffusion equation arising in microbial ecology. Electronic Journal of Differential Equations, 15, 77-95(2007) [69] EFENDIEV, M. A., ZELIK, S. V., and EBERL, H. J. Existence and longtime behavior of a biofilm model. Communications on Pure and Applied Analysis, 8(2), 509-531(2009) [70] EBERL, H. J. and COLLINSON, S. A modelling and simulation study of siderophore mediated antagonsim in dual-species biofilms. Theoretical Biology and Medical Modelling, 6, 30(2009) [71] GHASEMI, M. and EBERL, H. J. Time adaptive numerical solution of a highly degenerate diffusion-reaction biofilm model based on regularisation. Journal of Scientific Computing, 74, 1060-1090(2018) [72] ENGLMANN, M., FEKETE, A., KUTTLER, C., FROMMBERGER, M., LI, X., GEBEFÜGI, I., FEKETE, J., and SCHMITT-KOPPLIN, P. The hydrolysis of unsubstituted N-acylhomoserine lactones to their homoserine metabolites:analytical approaches using ultra performance liquid chromatography. Journal of Chromatography A, 1160(1-2), 184-193(2007) [73] DONG, Y., LI, J., LI, P., and YU, J. Ultrasound microbubbles enhance the activity of vancomycin against staphylococcus epidermidis biofilms in vivo. Journal of Ultrasound in Medicine, 37(6), 1379-1387(2018) [74] REUTER, F., LAUTERBORN, S., METTIN, R., and LAUTERBORN, W. Membrane cleaning with ultrasonically driven bubbles. Ultrasonics Sonochemistry, 37, 542-560(2017) [75] AGGARWAL, S., POPPELE, E. H., and HOZALSKI, R. M. Development and testing of a novel microcantilever technique for measuring the cohesive strength of intact biofilms. Biotechnology and Bioengineering, 105(5), 924-934(2009) [76] MATHIAS, J. D. and STOODLEY, P. Applying the digital image correlation method to estimate the mechanical properties of bacterial biofilms subjected to a wall shear stress. Biofouling, 25(8), 695-703(2009) [77] ROCHEX, A., GODON, J. J., BERNET, N., and ESCUDIE, R. Role of shear stress on composition, diversity and dynamics of biofilm bacterial communities. Water Research, 42(20), 4915-4922(2008) [78] VAN-WIJNGAARDEN, L. Mechanics of collapsing cavitation bubbles. Ultrasonics Sonochemistry, 29, 524-527(2016) [79] WU, T. Y., GUO, N., TEH, C. Y., and HAY, J. X. W. Advances in Ultrasound Technology for Environmental Remediation, Springer, Dordrecht (2013) [80] CHRISTOPHER, M. R., JOHN, C. C., BENJAMIN, L. B., JARED, L. N., RICHARD, A. R., and WILLIAM, G. P. Low-frequency ultrasound increases outer membrane permeability of Pseudomonas aeruginosa. The Journal of General and Applied Microbiology, 52, 295-301(2006) [81] JOHN, C. C., JARED, L. N., BENJAMIN, L. B., CHRISTOPHER, M. R., RICHARD, A. R., and WILLIAM, G. P. Ultrasonic-enhanced gentamicin transport through colony biofilms of Pseudomonas aeruginosa and Escherichia coli. Journal of Infection and Chemotherapy, 10, 193-199(2004) [82] DONG, Y. H. and ZHANG, L. H. Quorum sensing and quorum-quenching enzymes. The Journal of Microbiolog, 43(1), 101-109(2005) [83] KALIA, V. C. Quorum sensing inhibitors:an overview. Biotechnology Advances, 31(2), 224-245(2013) |