[1] VELTE, W. Concerning the regularizing KS-transformation. Celestial Mechanics, 17, 395-403(1978) [2] VIVARELLI, M. D. The KS-transformation in hypercomplex form. Celestial Mechanics, 29, 45-50(1983) [3] VIVARELLI, M. D. Geometrical and physical outlook on the cross product of two quaternions. Celestial Mechanics, 41, 359-370(1988) [4] VIVARELLI, M. D. On the connection among three classical mechanical problems via the hypercomplex KS-transformation. Celestial Mechanics and Dynamical Astronomy, 50, 109-124(1991) [5] SHAGOV, O. B. On two types of equations of motion of artificial satellite of the Earth in oscillatory form. Akademiia Nauk SSSR, Izvestiia, Mekhanika Tverdogo Tela, 2, 3-8(1990) [6] DEPRIT, A., ELIPE, A., and FERRER, S. Linearization:Laplace vs. Stiefel. Celestial Mechanics and Dynamical Astronomy, 58, 151-201(1994) [7] VRBIK, J. Celestial mechanics via quaternions. Canadian Journal of Physics, 72, 141-146(1994) [8] VRBIK, J. Perturbed Kepler problem in quaternion form. Journal of Physics A:Mathematical and General, 28, 193-198(1995) [9] WALDVOGEL, J. Quaternions and the perturbed Kepler problem. Celestial Mechanics and Dynamical Astronomy, 95, 201-212(2006) [10] WALDVOGEL, J. Quaternions for regularizing celestial mechanics:the right way. Celestial Mechanics and Dynamical Astronomy, 102(1), 149-162(2008) [11] SAHA, P. Interpreting the Kustaanheimo-Stiefel transform in gravitational dynamics. Monthly Notices of the Royal Astronomical Society, 400, 228-231(2009) [12] ZHAO, L. Kustaanheimo-Stiefel regularization and the quadrupolar conjugacy. Regular and Chaotic Dynamics, 20(1), 19-36(2015) [13] ROA, J., URRUTXUA, H., and PELAEZ, J. Stability and chaos in Kustaanheimo-Stiefel space induced by the Hopf fibration. Monthly Notices of the Royal Astronomical Society, 459, 2444-2454(2016) [14] ROA, J., URRUTXUA, H., and PELAEZ, J. Stability and chaos in Kustaanheimo-Stiefel space induced by the Hopf fibration. Monthly Notices of the Royal Astronomical Society, 459, 2444-2454(2016) [15] ROA, J. and PELAEZ, J. The theory of asynchronous relative motion II:universal and regular solutions. Celestial Mechanics and Dynamical Astronomy, 127, 343-368(2017) [16] BREITER, S. and LANGNER, K. Kustaanheimo-Stiefel transformation with an arbitrary defining vector. Celestial Mechanics and Dynamical Astronomy, 128, 323-342(2017) [17] BREITER, S. and LANGNER, K. The extended Lissajous-Levi-Civita transformation. Celestial Mechanics and Dynamical Astronomy, 130, 68(2018) [18] BREITER, S. and LANGNER, K. The Lissajous-Kustaanheimo-Stiefel transformation. Celestial Mechanics and Dynamical Astronomy, 131, 9(2019) [19] FERRER, S. and CRESPO, F. Alternative angle-based approach to the KS-map:an interpretation through symmetry and reduction. Journal of Geometric Mechanics, 10(3), 359-372(2018) [20] CHELNOKOV, Y. N. On the regularization of the equations of the three-dimensional two body problem. Mechanics of Solids, 16(2), 1-10(1981) [21] CHELNOKOV, Y. N. Regular equations of the three-dimensional two-body problem. Mechanics of Solids, 19(1), 1-7(1984) [22] CHELNOKOV, Y. N. Quaternion methods in problems of perturbed central motion of material point, part 1:general theory, applications to the problem of regularization and to the problem of motion of artificial earth satellite. Dep. VINITI 13.12.85, No. 218628-B., Moscow (1985) [23] CHELNOKOV, Y. N. Quaternion methods in problems of perturbed central motion of material point, part 2:spatial problem of unperturbed central motion. Problem with initial conditions, Dep. VINITI 13.22.85, No. 8629-B., Moscow (1985) [24] CHELNOKOV, Y. N. Application of quaternions in the theory of orbital motion of an artificial satellite:I. Cosmic Research, 30(6), 612-621(1992) [25] CHELNOKOV, Y. N. Application of quaternions in the theory of orbital motion of an artificial satellite:II. Cosmic Research, 31(3), 409-418(1993) [26] CHELNOKOV, Y. N. Quaternion regularization and stabilization of perturbed central motion:I. Mechanics of Solids, 28(1), 16-25(1993) [27] CHELNOKOV, Y. N. Quaternion regularization and stabilization of perturbed central motion:II. Mechanics of Solids, 28(2), 1-12(1993) [28] CHELNOKOV, Y. N. Analysis of optimal motion control for a material point in a central field with application of quaternions. Journal of Computer and Systems Sciences International, 46(5), 688-713(2007). [29] CHELNOKOV, Y. N. Quaternion Models and Methods of Dynamics, Navigation, and Control of Motion, Fizmatlit, Moscow (2011) [30] CHELNOKOV, Y. N. Quaternion regularization in celestial mechanics and astrodynamics and trajectory motion control:I. Cosmic Research, 51(5), 350-361(2013) [31] CHELNOKOV, Y. N. Quaternion regularization in celestial mechanics and astrodynamics and trajectory motion control:II. Cosmic Research, 52(4), 304-317(2014) [32] CHELNOKOV, Y. N. Quaternion regularization in celestial mechanics, astrodynamics, and trajectory motion control:III. Cosmic Research, 53(5), 394-409(2015) [33] CHELNOKOV, Y. N. Quaternion regularization of the equations of the perturbed spatial restricted three-body problem:I. Mechanics of Solids, 52(6), 613-639(2017) [34] CHELNOKOV, Y. N. Quaternion regularization of the equations of the perturbed spatial restricted three-body problem:II. Mechanics of Solids, 53(6), 633-650(2018) [35] CHELNOKOV, Y. N. Perturbed spatial two-body problem:regular quaternion equations of relative motion. Mechanics of Solids, 54(2), 169-178(2019) [36] CHELNOKOV, Y. N. Quaternion equations of disturbed motion of an artificial earth satellite. Cosmic Research, 57(2), 101-114(2019) [37] STIEFEL, E. and SCHEIFELE, G. E. Linear and Regular Celestial Mechanics, Springer, Berlin (1971) [38] BORDOVITSYNA, T. V. Contemporary Numerical Methods in Problems of Celestial Mechanics, Nauka, Moscow (1984) [39] BORDOVITSYNA, T. V. and AVDYUSHEV, V. A. Theory of Motion of Artificial Satellites of the Earth. Analytical and Numerical Methods, Izdat. Tomsk. Univ., Tomsk (2007) [40] FUKUSHIMA, T. Efficient orbit integration by linear transformation for Kustaanheimo-Stiefel regularization. The Astronomical Journal, 129(5), 2496(2005) [41] FUKUSHIMA, T. Numerical comparison of two-body regularizations. The Astronomical Journal, 133(6), 2815(2007) [42] PELAEZ, J., HEDO, J. M., and RODRIGUEZ, P. A. A special perturbation method in orbital dynamics. Celestial Mechanics and Dynamical Astronomy, 97, 131-150(2007) [43] BAU, G., BOMBARDELLI, C., PELAEZ, J., and LORENZINI, E. Non-singular orbital elements for special perturbations in the two-body problem. Monthly Notices of the Royal Astronomical Society, 454, 2890-2908(2015) [44] AMATO, D., BOMBARDELLI, C., BAU, G., MORAND, V., and ROSENGREN, A. J. Nonaveraged regularized formulations as an alternative to semi-analytical orbit propagation methods. Celestial Mechanics and Dynamical Astronomy, 131, 21(2019) [45] BAU, G. and ROA, J. Uniform formulation for orbit computation:the intermediate elements. Celestial Mechanics and Dynamical Astronomy, 132, 10(2020) [46] EULER, L. De motu rectilineo trium corporum se mutuo attrahentium. Novi Commentarii Academiae Scientiarum Petropolitanae, 11, 144-151(1765) [47] LEVI-CIVITA, T. Traettorie singolari ed urbi nel problema ristretto dei tre corpi. Annali di Matematica Pura ed Applicata, 9, 1-32(1904) [48] LEVI-CIVITA, T. Sur la resolution qualitative du probleme restreint des trois corps. Acta Mathematica, 30, 305-327(1906) [49] LEVI-CIVITA, T. Sur la regularization du probleme des trios corps. Acta Mathematica, 42, 99-144(1920) [50] LEVI-CIVITA, T. Sur la resolution qualitative du probleme restreint des trois corps. Opere Mathematiche, 2, 411-417(1956) [51] KUSTAANHEIMO, P. Spinor regularization of the Kepler motion. Annales Universitatis Turkuensis, Series A. I. Astronomica-Chemica-Physica-Mathematica, 73, 3-7(1964) [52] KUSTAANHEIMO, P. and STIEFEL, E. Perturbation theory of Kepler motion based on spinor regularization. Journal für die Reine und Angewandte Mathematik, 218, 204-219(1965) [53] BRUMBERG, V. A. Analytical Algorithms of Celestial Mechanics, Nauka, Moscow (1980) [54] BOHLIN, K. Note sur le probleme des deux corps et sur une integration nouvelle dans le probleme des trois corps. Bulletin Astronomique, 28, 113-119(1911) [55] BURDET, C. A. Theory of Kepler motion:the general perturbed two body problem. Zeitschrift für Angewandte Mathematik und Physik, 19, 345-368(1968) [56] BURDET, C. A. Le mouvement Keplerien et les oscillateurs harmoniques. Journal für die Reine und Angewandte Mathematik, 238, 71-84(1969) [57] CHELNOKOV, Y. N. Regular quaternion models of perturbed orbital motion of a rigid body in the Earth's gravitational field. Mechanics of Solids, 55(7), 40-58(2020) [58] ARSETH, S. J. and ZARE, K. A. Regularization of the three-body problem. Celestial Mechanics, 10(2), 185-205(1974) [59] HOPF, H. Uber die Abbildungen der dreidimensionalen Sphare auf die Kugelflache. Mathematische Annalen, 104(1), 637-665(1931) [60] HURWITZ, A. Mathematische Werke, Vol. 2, Birkhauser, Basel (1933) [61] SUNDMAN, K. F. Recherches sur le probl'eme des trois corps. Acta Societatis Scientiarium Fennicae, 34(6), 69-94(1907) [62] SUNDMAN, K. F. Memoire sur le probleme des trois corps. Acta Mathematica, 36, 105-179(1913) [63] HAMILTON, W. R. Lectures on Quaternions, Hodges and Smith, Dublin (1853) [64] HAMILTON, W. R. Elements of Quaternions, Chelsea Publ. Co., New York (1969) [65] CLIFFORD, W. Preliminary sketch of biquaternions. Proceedings of the London Mathematical Society, 4, 381-395(1873) [66] CHELNOKOV, Y. N. On integration of kinematic equations of a rigid body's screw-motion. Journal of Applied Mathematics and Mechanics, 44(1), 19-23(1980) [67] STUDY, E. Von der Bewegungen und Umlegungen. Mathematische Annalen, 39, 441-566(1891) [68] KOTELNIKOV, A. P. Screw calculus and some applications to geometry and mechanics. Annals of the Imperial University of Kazan, Kazan (1895) [69] CHELNOKOV, Y. N. Quaternion and Biquaternion Models and Methods of Solid Body Mechanics and Their Applications:Geometry and Kinematics of Motion, Fizmatlit, Moscow (2006) [70] BELEN'KIY, I. M. About one method uniformization of solutions in problems of the central movement. Journal of Applied Mathematics and Mechanics, 45(1), 34-41(1981) [71] DUBOSHIN, G. N. Celestial Mechanics:Main Tasks and Methods, Nauka, Moscow (1968) [72] DUBOSHIN, G. N. Celestial Mechanics:Methods of the Theory of Motion of Artificial Celestial Bodies, Nauka, Moscow (1983) [73] VOLK, O. Concerning the derivation of the KS-transformation. Celestial Mechanics, 8, 297-305(1973) [74] LIDOV, M. L. Enhancement of dimensionality of Hamiltonian systems, KS-transformation, the use of partial integrals. Kosmicheskie Issledovaniia, 20(2), 163-176(1982) [75] LIDOV, M. L. Method of constructing families of three-dimensional periodic orbits in the Hill problem. Kosmicheskie Issledovaniia, 20(6), 787-807(1982) [76] LIDOV, M. L. and LYAKHOVA, V. A. Families of three-dimensional periodic orbits of the Hill problem and their stability. Kosmicheskie Issledovaniia, 21(1), 3-11(1983) [77] POLESHCHIKOV, S. M. Regularization of canonical equations of the two-body problem using a generalized KS-matrix. Kosmicheskie Issledovaniia, 37(3), 322-328(1999) [78] STIEFEL, E. L. and WALDVOGEL, J. Generalisation de la regularisation de Birkhoff pour le mouvement du mobile dans l'espace a trois dimensions. Comptes Rendus Hebdomadaires des Séances de Lacadémie des Sciences, Paris (1965) [79] STIEFEL, E., ROSSLER, M., WALDVOGEL, J., and BURDET, C. A. Methods of Regularization for Computing Orbits in Celestial Mechanics, NASA Contractor Report, NASA CR-769, 88-115(1967) [80] BIRKHOFF, G. D. The restricted problem of three bodies. Rendiconti del Circolo Matematico di Palermo (1884-1940), 39(1), 265-334(1915) [81] ARSETH, S. J. Gravitational N-Body Simulations, Cambridge University Press, New York (2003) [82] DEPRIT, A. Ideal frames for perturbed Keplerian motions. Celestial Mechanics, 13(2), 253-263(1976) [83] ANDOYER, H. Cours de Mecanigue Celeste, Gauthier-Vilars, Paris (1923) [84] MUSEN, P. Application of Hansen's theory to the motion of an artificial satellite in the gravitational field of the Earth. Journal of Geophysical Research, 64, 2271-2279(1959) [85] CHELNOKOV, Y. N. and SAPUNKOV, Y. G. Design of optimum control strategies and trajectories of a spacecraft with the regular quaternion equations of the two body problem. Cosmic Research, 34(2), 137-145(1996) [86] SAPUNKOV, Y. G. and CHELNOKOV, Y. N. Construction of optimum controls and trajectories of motion of the center of masses of a spacecraft equipped with the solar sail and low-thrust engine, using quaternions and Kustaanheimo-Stiefel variables. Cosmic Research, 52(6), 450-460(2014) [87] SAPUNKOV, Y. G. and CHELNOKOV, Y. N. Solution of the problem of optimal spacecraft launching into orbit using reactive acceleration and solar sail in Kustaanheimo-Stiefel variables. Cosmic Research, 59(4), 280-290(2021) [88] CHELNOKOV, Y. N. Inertial navigation in space using the regular quaternion equations of astrodynamics. Mechanics of Solids, 54(2), 157-168(2019) [89] CHELNOKOV, Y. N. Quaternion regular equations and algorithms of space inertial navigation. 26th Saint Petersburg International Conference on Integrated Navigation Systems, IEEE, St. Petersburg, 303-306(2019) |