[1] TIMOSHENKO, S. P. and GOODIER, J. N. Theory of Elasticity, McGraw-Hill, New York, 343-395(1951) [2] JOHNSON, K. L. Contact Mechanics, Cambridge University Press, Cambridge, 1-425(1987) [3] WRIGGERS, P. Computational Contact Mechanics, Springer, New York, 11-473(2006) [4] ACARY, V. Numerical Methods for Nonsmooth Dynamical Systems:Applications in Mechanics and Electronics, Springer, New York, 1-165(2008) [5] BROGLIATO, B. Nonsmooth Mechanics, Springer, New York, 1-477(2016) [6] LAURSEN, T. A. Computational Contact and Impact Mechanics, Springer, New York, 7-435(2003) [7] YAO, W. L., CHEN, B., LIU, C. S., and XU, J. Sliding state stepping algorithm for solving impact problems of multi-rigid-body system with joint friction. Applied Mathematics and Mechanics (English Edition), 28(11), 1621-1627(2007) https://doi.org/10.1007/s10483-017-2272-7 [8] STRONGE, W. J. Impact Mechanics, Cambridge University Press, Cambridge, 1-317(2018) [9] ZHONG, Z. H. Finite Element Procedures for Contact-Impact Problems, Oxford University Press, Oxford, 1-245(1993) [10] GALVEZ, J., CAVALIERI, F. J., COSIMO, A., BRÜLS, O., and CARDONA, A. A nonsmooth frictional contact formulation for multibody system dynamics. International Journal for Numerical Methods in Engineering, 121(2), 3584-3609(2020) [11] WANG, G. X., WANG, L., and YUAN, Y. Investigation on dynamics performance of multibody system with rough surface. Applied Mathematical Modelling, 104, 358-372(2022) [12] PENNESTRÌ, E., ROSSI, V. D., SALVINI, P., and VALENTINI, P. P. Review and comparison of dry friction force models. Nonlinear Dynamics, 83(4), 1785-1801(2016) [13] KIKUUWE, R., AKESUE, N. T., SANO, A., MOCHIYAMA, H., and FUJIMOTO, H. Fixedstep friction simulation:from classical Coulomb model to modern continuous models. IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Edmonton, 1009-1016(2005) [14] POUILLY-CATHELAIN, M. and FEYEL, P. A friction model based on parallelization of original lugre models and the corresponding compensator. IFAC-PapersOnLine, 54(7), 499-504(2021) [15] MAJDOUB, K. E., OUADI, H., BELBOUNAGUIA, N., KHEDDIOUI, E., and AMMARI, O. Optimal control of semi-active suspension quarter car employing magnetorheological damper and Dahl model. Renewable Energies, Power Systems and Green Inclusive Economy (2018) https://doi.org/10.1109/REPSGIE.2018.8488781 [16] JAYSWAL, A. and ARANA-JIMÉNEZ, M. Robust penalty function method for an uncertain multi-time control optimization problems. Journal of Mathematical Analysis and Applications, 505(1), 125-453(2022) [17] BEHZAD, M. and ALVANDI, M. Friction-induced backward rub of rotors in non-annular clearances:experimental observations and numerical analysis. Tribology International, 152, 106430(2020) [18] CUI, Y., DING, C., LI, X. D., and ZHAO, X. Y. Augmented Lagrangian methods for convex matrix optimization problems. Journal of the Operations Research Society of China, 10(2), 305-342(2021) [19] ZHENG, X., ZHANG, R., and WANG, Q. Comparison and analysis of two Coulomb friction models on the dynamic behavior of slider-crank mechanism with a revolute clearance joint. Applied Mathematics and Mechanics (English Edition), 39(9), 1239-1258(2018) https://doi.org/10.1007/s10483-018-2371-9 [20] WANG, K., TIAN, Q., and HU, H. Nonsmooth spatial frictional contact dynamics of multibody systems. Multibody System Dynamics, 53(1), 1-27(2021) [21] CHATTERJEE, A. and BOWLING, A. Modeling three-dimensional surface-to-surface rigid contact and impact. Multibody System Dynamics, 46, 1-40(2019) [22] ZHOU, Z., ZHENG, X., WANG, Q., CHEN, Z., and LIANG, B. Modeling and simulation of point contact multibody system dynamics based on the 2D LuGre friction model. Mechanism and Machine Theory, 158(5), 104244(2021) [23] LEE, J., LEE, M., and LEE, D. Large-dimensional multibody dynamics simulation using contact nodalization and diagonalization. Arxiv, 2201, 09212(2022) [24] YAO, W., YANG, L., and GUO, M. Gauss optimization method for the dynamics of unilateral contact of rigid multibody systems. Acta Mechanica Sinica, 37(3), 1-13(2021) [25] DE SAXCÉ, G. and FENG, Z. Q. The bipotential method:a constructive approach to design the complete contact law with friction and improved numerical algorithms. Mathematical and Computer Modelling, 28(4-8), 225-245(1998) [26] DE SAXCÉ, G. and FENG, Z. Q. New inequality and functional for contact with friction:the implicit standard material approach. Mechanics of Structures and Machines, 19(3), 301-325(1991) [27] AHMADIZADEH, M., SHAFEI, A. M., and JAFARI, R. Frictional impact-contacts in multiple flexible links. International Journal of Structural Stability and Dynamics, 21(6), 2150075(2021) [28] SONG, N., PENG, H., KAN, Z., and CHEN, B. A novel nonsmooth approach for flexible multibody systems with contact and friction in 3D space. Nonlinear Dynamics, 102, 1-34(2020) [29] FENG, Z. Q. and FENG, Z. G. FER/VIEW:An interactive finite element post-processor. Computational Mechanics, WCCM VI in Conjunction with APCOM04, Springer, Beijing (2004) [30] YEOH, O. H. Some forms of the strain energy function for rubber. Rubber Chemistry and Technology, 66(5), 754-771(1993) [31] WRIGGERS, P. Nonlinear Finite Element Methods, Springer, New York, 19-103(2008) [32] ARMERO, F. and PETOCZ, E. Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems. Computer Methods in Applied Mechanics and Engineering, 158(3-4), 269-300(1998) [33] MOREAU, J. J. Unilateral contact and dry friction in finite freedom dynamics. Nonsmooth Mechanics and Applications, 302, 31-48(1988) [34] JEAN, M. Dynamics with partially elastic shocks and dry friction:double scale method and numerical approach. 4th Meeting on Unilateral Problems in Structural Analysis, Capri (1989) [35] KUHL, D. and CRISFIELD, M. A. Energy-conserving and decaying algorithms in nonlinear structural dynamics. International Journal for Numerical Methods in Engineering, 45(5), 569-599(1999) [36] ZHU, D. C. and XING, Y. F. The analytical solution of the point elastic impact. Acta Mechanica Sinica, 28(1), 99-103(1996) |