[1] ROSE, J. L. A baseline and vision of ultrasonic guided wave inspection potential. Journal of Pressure Vessel Technology, 124, 273-282(2002) [2] BAI, H., SHAH, A. H., POPPLEWELL, N., and DATTA, S. K. Scattering of guided waves by circumferential cracks in composite cylinders. International Journal of Solids&Structures, 39, 4583-4603(2002) [3] SU, Z., YE, L., and LU, Y. Guided lamb waves for identification of damage in composite structures:a review. Journal of Sound and Vibration, 295, 753-780(2006) [4] DA, Y. H., Wang, B., LIU, D. Z., and QIAN, Z. H. An analytical approach to reconstruction of axisymmetric defects in pipelines using T (0, 1) guided waves. Applied Mathematics and Mechanics (English Edition), 41(10), 1479-1492(2020) https://doi.org/10.1007/s10483-020-2661-9 [5] QIU, L., YUAN, S., MEI, H., and FANG, F. An improved Gaussian mixture model for damage propagation monitoring of an aircraft wing spar under changing structural boundary conditions. Sensors, 16, 291(2016) [6] EREMIN, A. V., BURKOV, M. V., BYAKOV, A. V., LYUBUTIN, P. S., PANIN, S. V., and KHIZHNYAK, S. A. Investigation of acoustic parameters for structural health monitoring of sandwich panel under cyclic load. Key Engineering Materials, 712, 319-323(2016) [7] PUTHILLATH, P. and ROSE, J. L. Ultrasonic guided wave inspection of a titanium repair patch bonded to an aluminum aircraft skin. International Journal of Adhesion and Adhesives, 30, 566-573(2010) [8] WANG, B. and HIROSE, S. Inverse problem for shape reconstruction of plate-thinning by guided SH-waves. Materials Transaction, 53, 1782-1789(2012) [9] SIKDAR, S. and BANERJEE, S. Identification of disbond and high density core region in a honeycomb composite sandwich structure using ultrasonic guided waves. Composite Structures, 152, 568-578(2016) [10] DA, Y., DONG, G., WANG, B., LIU, D., and QIAN Z. A novel approach to surface defect detection. International Journal of Engineering Science, 133, 181-195(2018) [11] ARRIDGE, S., MAASS, P., ÖKTEM, O., and SCHONLIEB, C. B. Solving inverse problems using data-driven models. Acta Numerica, 28, 1-174(2019) [12] AVCI, O., ABDELJABER, O., KIRANYAS, S., HUSSEIN, M., GABBOUJ, M., and INMAN, D. J. A review of vibration-based damage detection in civil structures:from traditional methods to machine learning and deep learning applications. Mechanical Systems and Signal Processing, 147, 107077(2021) [13] MUNIR, N., KIM, H. J., PARK, J., SONG, S. J., and KANG, S. S. Convolutional neural network for ultrasonic weldment flaw classification in noisy conditions. Ultrasonics, 94, 74-81(2019) [14] WANG, X. C., LIN, M., LI, J., TONG, J. K., HUANG, X. J., LIANG, L., FAN, Z., and LIU, Y. Ultrasonic guided wave imaging with deep learning:applications in corrosion mapping. Mechanical Systems and Signal Processing, 169, 108761(2022) [15] CRUZ, F. C., SIMASFILHO, E. F., ALBUQUERQUE, M. C. S., SILVA, I. C., FARIAS, C. T. T., and GOUVEA, L. L. Efficient feature selection for neural network based detection of flaws in steel welded joints using ultrasound testing. Ultrasonics, 73, 1-8(2017) [16] YE, Z. and YU, J. Deep morphological convolutional network for feature learning of vibration signals and its applications to gearbox fault diagnosis. Mechanical Systems and Signal Processing, 161, 107984(2021) [17] VIRKKUNEN, I., KOSKINEN, T., JESSEN-JUHLER, O., and RINTA-AHO, J. Augmented ultrasonic data for machine learning. Journal of Nondestructive Evaluation, 40, 1-11(2021) [18] LATÊTE, T., GAUTHIER, B., and BELANGER, P. Towards using convolutional neural network to locate, identify and size defects in phased array ultrasonic testing. Ultrasonics, 115, 106436(2021) [19] MIORELLI, R., KULAKOVSKYI, A., CHAPUIS, B., D'ALMEIDA, O., and MESNIL, O. Supervised learning strategy for classification and regression tasks applied to aeronautical structural health monitoring problems. Ultrasonics, 113, 106372(2021) [20] ZHAO, Y. P., XIE, Y. L., and YE, Z. F. A new dynamic radius SVDD for fault detection of aircraft engine. Engineering Applications of Artificial Intelligence, 100, 104177(2021) [21] JIN, K. H., MCCANN, M. T., FROUSTEY, E., and UNSER, M. Deep convolutional neural network for inverse problems in imaging. IEEE Transactions on Image Processing, 26, 4509-4522(2017) [22] SUN, Y., XIA, Z., and KAMILOV, U. S. Efficient and accurate inversion of multiple scattering with deep learning. Optics Express, 26, 14678-14688(2018) [23] BOUBLIL, D., ELAD, M., SHTOK, J., and ZIBULEVSKY, M. Spatially-adaptive reconstruction in computed tomography using neural networks. IEEE Transactions on Medical Imaging, 34, 1474-1485(2015) [24] MCCANN, M. T., JIN, K. H., and UNSER, M. Convolutional neural networks for inverse problems in imaging:a review. IEEE Signal Processing Magazine, 34, 85-95(2017) [25] ACHENBACH, J. A. and ACHENBACH, J. D. Reciprocity in Elastodynamics, Cambridge University Press, Cambridge (2003) [26] NAIR, V. and HINTON, G. E. Rectified linear units improve restricted Boltzmann machines. Proceedings of the 27th International Conference on Machine Learning (ICML-10), International Machine Learning Society, Haifa, 807-814(2010) [27] YOO, H. J. Deep convolution neural networks in computer vision:a review. IEIE Transactions on Smart Processing and Computing, 4, 35-43(2015) [28] YANG, C., WANG, B., and QIAN, Z. Three-dimensional modified BEM analysis of forward scattering problems in elastic solids. Engineering Analysis with Boundary Elements, 122, 145-154(2021) [29] FLYNN, E. B., CHONG, S. Y., JARMER, G. J., and LEE, J. R. Structural imaging through local wavenumber estimation of guided waves. NDT&E International, 59, 1-10(2013) [30] CAI, J., SHI, L., and QING, X. P. A time-distance domain transform method for Lamb wave dispersion compensation considering signal waveform correction. Smart Materials and Structures, 22, 105024(2013) [31] BOUBLIL, D., ELAD, M., SHTOK, J., and ZIBULEVSKY, M. Spatially-adaptive reconstruction in computed tomography using neural networks. IEEE Transactions on Medical Imaging, 34, 1474-1485(2015) [32] OQUAB, M., BOTTOU, L., LAPTEV, I., and SIVIC, J. Learning and transferring mid-level image representations using convolutional neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Columbus (2014) |