[1] FEFFERMAN, C. L. Existence and smoothness of the Navier-Stokes equation. The Millennium Prize Problems, 57, 67(2000) [2] PHILLIPS, L. Turbulence, the oldest unsolved problem in physics. Retrieved from arstechnica.com/science/2018/10/turbulence-the-oldest-unsolved-problem-in-physics. Accessed October, 25, 2018(2018) [3] LUCY, L. B. A numerical approach to the testing of the fission hypothesis. The Astronomical Journal, 82, 1013-1024(1977) [4] GINGOLD, R. A. and MONAGHAN, J. J. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 181, 375-389(1977) [5] MONAGHAN, J. J. Smoothed particle hydrodynamics. Annual Review of Astronomy and Astrophysics, 30, 543-574(1992) [6] LIU, M. and LIU, G. Smoothed particle hydrodynamics (SPH): an overview and recent developments. Archives of Computational Methods in Engineering, 17, 25-76(2010) [7] VACONDIO, R., ALTOMARE, C., DE LEFFE, M., HU, X., LE TOUZÉ, D., LIND, S., MARONGIU, J. C., MARRONE, S., ROGERS, B. D., and SOUTO-IGLESIAS, A. Grand challenges for smoothed particle hydrodynamics numerical schemes. Computational Particle Mechanics, 8, 575-588(2021) [8] OWHADI, H., SCOVEL, C., and SCHÄFER, F. Statistical numerical approximation. Notices of the American Mathematical Society, 66, 1608-1617(2019) [9] OWHADI, H. and SCOVEL, C. Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization: From a Game Theoretic Approach to Numerical Approximation and Algorithm Design, Vol. 35, Cambridge University Press, Cambridge (2019) [10] MICCHELLI, C. A. and RIVLIN, T. J. A survey of optimal recovery. Optimal Estimation in Approximation Theory, Springer, New York, 1-54(1977) [11] OWHADI, H., SCOVEL, C., and YOO, G. R. Kernel Mode Decomposition and the Programming of Kernels, Springer, Cham (2021) [12] LEONARD, A. Vortex methods for flow simulation. Journal of Computational Physics, 37, 289-335(1980) [13] COTTET, G. H. and KOUMOUTSAKOS, P. D. Vortex Methods: Theory and Practice, Vol. 8, Cambridge University Press, Cambridge (2000) [14] RAISSI, M., PERDIKARIS, P., and KARNIADAKIS, G. E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686-707(2019) [15] KARNIADAKIS, G. E., KEVREKIDIS, I. G., LU, L., PERDIKARIS, P., WANG, S., and YANG, L. Physics-informed machine learning. Nature Reviews Physics, 3, 422-440(2021) [16] OWHADI, H. Bayesian numerical homogenization. Multiscale Modeling & Simulation, 13, 812-828(2015) [17] OWHADI, H. and ZHANG, L. Gamblets for opening the complexity-bottleneck of implicit schemes for hyperbolic and parabolic ODEs/PDEs with rough coefficients. Journal of Computational Physics, 347, 99-128(2017) [18] OWHADI, H. Multigrid with rough coefficients and multiresolution operator decomposition from hierarchical information games. SIAM Review, 59, 99-149(2017) [19] SCHÄFER, F., KATZFUSS, M., and OWHADI, H. Sparse cholesky factorization by Kullback-Leibler minimization. SIAM Journal on Scientific Computing, 43, A2019-A2046(2021) [20] SCHÄFER, F., SULLIVAN, T. J., and OWHADI, H. Compression, inversion, and approximate pca of dense kernel matrices at near-linear computational complexity. Multiscale Modeling & Simulation, 19, 688-730(2021) [21] YOO, G. R. and OWHADI, H. De-noising by thresholding operator adapted wavelets. Statistics and Computing, 29, 1185-1201(2019) [22] CHEN, Y., HOSSEINI, B., OWHADI, H., and STUART, A. M. Solving and learning nonlinear PDEs with Gaussian processes. Journal of Computational Physics, 447, 110668(2021) [23] OWHADI, H. Computational graph completion. Research in the Mathematical Sciences, 9, 1-33(2022) [24] BABUŠKA, I. and OSBORN, J. E. Can a finite element method perform arbitrarily badly? Mathematics of Computation, 69, 443-462(2000) [25] OWHADI, H. Do ideas have shape? Idea registration as the continuous limit of artificial neural networks. arXiv Preprint, arXiv:2008.03920(2020) https://doi.org/10.48550/arXiv.2008.03920 [26] ALVAREZ, M. A., ROSASCO, L., and LAWRENCE, N. D. Kernels for vector-valued functions: a review. Foundations and Trends in Machine Learning, 4, 195-266(2011) [27] SUN, H. W. and ZHOU, D. X. Reproducing kernel hilbert spaces associated with analytic translation-invariant mercer kernels. Journal of Fourier Analysis and Applications, 14, 89-101(2008) [28] KOLMOGOROV, A. N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Doklady Akademii Nauk SSSR, 30, 301-305(1941) [29] FRISCH, U. Turbulence: the legacy of A. N. Kolmogorov. Physics Today, 49, 82(1996) [30] LINDBORG, E. Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? Journal of Fluid Mechanics, 388, 259-288(1999) [31] BOFFETTA, G. and ECKE, R. E. Two-dimensional turbulence. Annual Review of Fluid Mechanics, 44, 427-451(2012) [32] SOMMERIA, J. Experimental study of the two-dimensional inverse energy cascade in a square box. Journal of Fluid Mechanics, 170, 139-168(1986) [33] WENDLAND, H. Scattered data approximation. Cambridge Monographs on Applied and Computational Mathematics, Vol. 17, Cambridge University Press, Cambridge (2005) [34] ZADRZYNSKA, E. and ZAJCZKOWSKI, W. M. Stability of two-dimensional Navier-Stokes motions in the periodic case. Journal of Mathematical Analysis and Applications, 423, 956-974(2015) [35] LADYZHENSKAYA, O. A. Sixth problem of the millennium: Navier-Stokes equations, existence and smoothness. Russian Mathematical Surveys, 58, 251(2003) [36] MARSDEN, J. E. and SHKOLLER, S. The anisotropic Lagrangian averaged Euler and Navier-Stokes equations. Archive for Rational Mechanics and Analysis, 166, 27-46(2003) [37] OWHADI, H. and YOO, G. R. Kernel flows: from learning kernels from data into the ABYSS. Journal of Computational Physics, 389, 22-47(2019) [38] CHEN, Y., OWHADI, H., and STUART, A. Consistency of empirical bayes and kernel flow for hierarchical parameter estimation. Mathematics of Computation, 90, 2527-2578(2021) [39] HAMZI, B. and OWHADI, H. Learning dynamical systems from data: a simple cross-validation perspective, part i: parametric kernel flows. Physica D: Nonlinear Phenomena, 421, 132817(2021) [40] HAMZI, B., MAULIK, R., and OWHADI, H. Simple, low-cost and accurate data-driven geophysical forecasting with learned kernels. Proceedings of the Royal Society A, 477, 20210326(2021) [41] DARCY, M., HAMZI, B., SUSILUOTO, J., BRAVERMAN, A., and OWHADI, H. Learning dynamical systems from data: a simple cross-validation perspective, part ii: nonparametric kernel flows. preprint (2021) https://doi.org/10.13140/RG.2.2.16391.32164 [42] LEE, J., DE BROUWER, E., HAMZI, B., and OWHADI, H. Learning dynamical systems from data: a simple cross-validation perspective, part iii: irregularly-sampled time series. arXiv Preprint, arXiv:2111.13037(2021) https://doi.org/10.48550/arXiv.2111.13037 [43] DARCY, M. D., HAMZI, B., LIVIERI, G., OWHADI, H., and TAVALLALI, P. One-shot learning of stochastic differential equations with data adapted kernels. Physica D: Nonlinear Phenomena, 444, 133583(2023) [44] PRASANTH, S., HADDAD, Z., SUSILUOTO, J., BRAVERMAN, A., OWHADI, H., HAMZI, B., HRISTOVA-VELEVA, S., and TURK, J. Kernel flows to infer the structure of convective storms from satellite passive microwave observations. 2021 AGU Fall Meeting Abstracts, AGU, San Francisco, A55F-1445(2021) [45] SUSILUOTO, J., BRAVERMAN, A., BRODRICK, P., HAMZI, B., JOHNSON, M., LAMMINPAA, O., OWHADI, H., SCOVEL, C., TEIXEIRA, J., and TURMON, M. Radiative transfer emulation for hyperspectral imaging retrievals with advanced kernel flows-based Gaussian process emulation. 2021 AGU Fall Meeting Abstracts, AGU, San Francisco, NG25A-0506(2021) [46] AKIAN, J. L., BONNET, L., OWHADI, H., and SAVIN, É. Learning "best" kernels from data in Gaussian process regression with application to aerodynamics. Journal of Computational Physics, 470, 111595(2022) [47] RAISSI, M., YAZDANI, A., and KARNIADAKIS, G. E. Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations. Science, 367, 1026-1030(2020) |