Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (3): 501-520.doi: https://doi.org/10.1007/s10483-025-3223-6
收稿日期:
2024-10-25
修回日期:
2024-12-24
发布日期:
2025-03-03
Zhangna XUE1,†(), Huameng WANG1, Jianlin LIU1, Minjie WEN2, Z. T. CHEN3
Received:
2024-10-25
Revised:
2024-12-24
Published:
2025-03-03
Contact:
Zhangna XUE
E-mail:xueangel168@126.com
Supported by:
中图分类号:
. [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(3): 501-520.
Zhangna XUE, Huameng WANG, Jianlin LIU, Minjie WEN, Z. T. CHEN. Thermal fracture analysis of two collinear cracks in a functionally graded medium based on the three-phase-lag model[J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(3): 501-520.
[1] | KOIZUMI, M. FGM activities in Japan. Composites Part B: Engineering, 28, 1–4 (1997) |
[2] | KASAEIAN, A. B., VATAN, S. N., and DANESHMAND, S. FGM materials and finding an appropriate model for the thermal conductivity. Procedia Engineering, 14, 3199–3204 (2011) |
[3] | NABIH, C., AKIRA, K., and MICHAEL, G. Worldwide trends in functional gradient materials research and development. Composites Engineering, 4, 883–894 (1994) |
[4] | PRAGYA, A. and GHOSH, T. K. Soft functionally gradient materials and structures-natural and manmade: a review. Advanced Materials, 35, 2300912 (2023) |
[5] | SASAKI, M. and HIRAI, T. Fabrication and properties of functionally gradient materials. Journal of the Ceramic Society of Japan, 99, 1002–1013 (1991) |
[6] | NODA, N. and SHEN, S. Thermal stress intensity factors for a crack in a functionally gradient material subjected to a thermal load. Journal of Thermal Stresses, 16, 247–263 (1993) |
[7] | PAULINO, G. H., JIN, Z. H., and DODDS, R. H., JR. Failure of functionally graded materials. Comprehensive Structural Integrity, 2, 607–644 (2003) |
[8] | NODA, N., TAKAHASHI, H., and OOTAO, Y. Transient thermal stress intensity factors for an edge crack in a functionally graded material plate. Journal of Thermal Stresses, 21, 153–170 (1998) |
[9] | BAO, G. and WANG, L. Multiple cracking in functionally graded ceramic/metal coatings. International Journal of Solids and Structures, 32, 2853–2871 (1995) |
[10] | TZOU, D. Y. The generalized lagging response in small-scale and high-rate heating. International Journal of Heat and Mass Transfer, 38, 3231–3240 (1995) |
[11] | CATTANEO, C. Sur form d'équation de la chaleur éliminant le paradoxe d'une propagation instantanée. Comptes Rendus de l'Académie des Sciences, 247, 431–433 (1958) |
[12] | VERNOTTE, P. Les paradoxes de la théorie continue de l'équation de la chaleur. Comptes Rendus de l'Académie des Sciences, 246, 3154–3155 (1958) |
[13] | ZHANG, Y. Y., CHEN, Z. T., GUO, F. N., ZHOU, T. Y., and ZENG, Z. W. Investigation of the fracture problem of functionally graded materials with an inclined crack under strong transient thermal loading. Theoretical and Applied Fracture Mechanics, 119, 103324 (2022) |
[14] | ZHANG, X. Y. and LI, X. F. Transient response of a functionally graded thermoelastic plate with a crack via fractional heat conduction. Theoretical and Applied Fracture Mechanics, 104, 102318 (2019) |
[15] | YU, Y. J., HU, W., and TIAN, X. G. A novel generalized thermoelasticity model based on memory-dependent derivative. International Journal of Engineering Science, 81, 123–134 (2014) |
[16] | XUE, Z. N., CHEN, Z. T., and TIAN, X. G. Transient thermal stress analysis for a circumferentially cracked hollow cylinder based on memory-dependent heat conduction model. Theoretical and Applied Fracture Mechanics, 96, 123–133 (2018) |
[17] | XUE, Z. N., CHEN, Z. T., and TIAN, X. G. Thermoelastic analysis of a cracked strip under thermal impact based on memory-dependent heat conduction model. Engineering Fracture Mechanics, 200, 479–498 (2018) |
[18] | XUE, Z. N., TIAN, X. G., and LIU, J. L. Thermal shock fracture of a crack in a functionally gradient half-space based on the memory-dependent heat conduction model. Applied Mathematical Modelling, 80, 840–858 (2020) |
[19] | TZOU, D. Y. A unified field approach for heat conduction from macro-to micro-scales. Journal of Heat and Mass Transfer, 117, 8–16 (1995) |
[20] | CHANDRASEKHARAIAH, D. S. Hyperbolic thermoelasticity: a review of recent literature. Applied Mechanics Reviews, 51, 705–729 (1998) |
[21] | YANG, W. Z., POURASGHAR, A., and CHEN, Z. T. Thermoviscoelastic fracture analysis of a cracked orthotropic fiber reinforced composite strip by the dual-phase-lag theory. Composite Structures, 258, 11319 (2021) |
[22] | YANG, W. Z., POURASGHAR, A., CHEN, Z. T., and ZHANG, X. Y. Non-Fourier thermoelastic interaction of two collinear cracks in a functionally graded layer. Applied Mathematical Modelling, 122, 417–434 (2023) |
[23] | CHOUDHURI, S. K. R. On a thermoelastic three-phase-lag model. Journal of Thermal Stresses, 30, 231–238 (2007) |
[24] | ZHANG, Q., SUN, Y. X., and YANG, J. L. Thermoelastic responses of biological tissue under thermal shock based on three phase lag model. Case Studies in Thermal Engineering, 28, 101376 (2021) |
[25] | BOURAOUI, H. A., DJEBABLA, A., and SOUAHI, A. Exponential stability of Timoshenko beams with three-phase-lag thermoelasticity. Computers & Mathematics with Applications, 168, 58–83 (2024) |
[26] | HOBINY, A., ABBAS, I., ALSHEHRI, H., VLASE, S., and MARIN, M. Thermoelastic analysis in poro-elastic materials using a TPL model. Applied Sciences, 12, 5914 (2022) |
[27] | SUR, A. and MONDAL, S. A generalized thermoelastic problem due to nonlocal effect in presence of mode I crack. Journal of Thermal Stresses, 43, 1277–1299 (2020) |
[28] | JIN, Z. H. and NODA, N. Transient thermal stress intensity factors for a crack in a semi-infinite plate of a functionally gradient material. International Journal of Solids and Structures, 31, 203–218 (1994) |
[29] | HU, K. and CHEN, Z. T. Thermoelastic analysis of a partially insulated crack in a strip under thermal impact loading using the hyperbolic heat conduction theory. International Journal of Engineering Science, 51, 144–160 (2012) |
[30] | DELALE, F. and ERDOGAN, F. Effect of transverse shear and material orthotropy in a cracked spherical cap. International Journal of Solids and Structures, 15, 907–926 (1979) |
[31] | THEOCARIS, P. S. and IOAKIMIDIS, N. I. Numerical integration methods for the solution of singular integral equations. Quarterly of Applied Mathematics, 35, 173–183 (1977) |
[32] | MILLER, M. K. and GUY, W. T. Numerical inversion of the Laplace transform by use of Jacobi polynomials. SIAM Journal on Numerical Analysis, 3, 624–635 (1966) |
[33] | TWEED, J. and MELROSE, G. The thermal stresses due to a uniform heat flux past two collinear cracks. International Journal of Engineering Science, 26, 1053–1057 (1988) |
[34] | HAN, D., FAN, H. W., YAN, C. Z., WANG, T., YANG, Y., ALI, S., and WANG, G. Heat conduction and cracking of functionally graded materials using an FDEM-based thermo-mechanical coupling model. Applied Sciences, 12, 12279 (2022) |
[1] | A. MEHDITABAR, G. H. RAHIMI, S. ANSARI SADRABADI. Three-dimensional magneto-thermo-elastic analysis of functionally graded cylindrical shell[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(4): 479-494. |
[2] | P. KIRAN. Throughflow and g-jitter effects on binary fluid saturated porous medium[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(10): 1285-1304. |
[3] | H. BENAISSA, EL-H. ESSOUFI, R. FAKHAR. Existence results for unilateral contact problem with friction of thermo-electro-elasticity[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(7): 911-926. |
[4] | Tianbao CHENG;Weiguo LI;Yushan SHI;Wei LU;Daining FANG. Effects of mechanical boundary conditions on thermal shock resistance of ultra-high temperature ceramics[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(2): 201-210. |
[5] | S. R. MAHMOUD;A. M. ABD-ALLA. Influence of magnetic field on free vibrations in elastodynamic problem of orthotropic hollow sphere [J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(8): 1051-1066. |
[6] | 项青;尹征南. Investigation of temperature effect on stress of flexspline[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(6): 791-798. |
[7] | 李卫国;成天宝;张如炳;方岱宁. Properties and appropriate conditions of stress reduction factor and thermal shock resistance parameters for ceramics[J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(11): 1351-1360. |
[8] | M. NAWAZ;T. HAYAT;A.ALSAEDI. Dufour and Soret effects on MHD flow of viscous fluid between radially stretching sheets in porous medium[J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(11): 1403-1418. |
[9] | O. U. MEHMOOD;N. MUSTAPHA;S. SHAFIE. Heat transfer on peristaltic flow of fourth grade fluid in inclined asymmetric channel with partial slip[J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(10): 1313-1328. |
[10] | A. M. ABD-ALLA;G. A. YAHYA. Thermal stresses in infinite circular cylinder subjected to rotation[J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(8): 1059-1078. |
[11] | K. VAJRAVELU;K. V. PRASAD;A. SUJATHA;吴朝安. MHD flow and mass transfer of chemically reactive upper convected Maxwell fluid past porous surface[J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(7): 899-910. |
[12] | S. BANIK;M. KANORIA. Effects of three-phase-lag on two-temperature generalized thermoelasticity for infinite medium with spherical cavity[J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(4): 483-498. |
[13] | R.库玛;鲁班德. 磁_微极广义热弹性介质中轴对称变形的弹性动力学[J]. Applied Mathematics and Mechanics (English Edition), 2009, 30(1): 39-48 . |
[14] | R.库玛;T.坎赛. 横观各向同性广义热弹性扩散Rayleigh波在自由表面上的传播[J]. Applied Mathematics and Mechanics (English Edition), 2008, 29(11): 1451-1462 . |
[15] | M.K.戈西;M.卡诺瑞阿. 热冲击载荷作用下的含球形空腔的广义热弹性功能梯度球形各向同性体[J]. Applied Mathematics and Mechanics (English Edition), 2008, 29(10): 1263-1278 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||