Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (7): 1315-1330.doi: https://doi.org/10.1007/s10483-025-3270-9
收稿日期:
2025-02-28
修回日期:
2025-05-18
发布日期:
2025-06-30
Qi WANG1,2, Li DING1,2, Shuo WANG1,2, Danping RUAN3, Yuanzhi XU4, Yanshu CHU1, D. AROLA5, Bingbing AN1,2,6, Dongsheng ZHANG1,2,6,†()
Received:
2025-02-28
Revised:
2025-05-18
Published:
2025-06-30
Contact:
Dongsheng ZHANG
E-mail:donzhang@staff.shu.edu.cn
Supported by:
中图分类号:
. [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(7): 1315-1330.
Qi WANG, Li DING, Shuo WANG, Danping RUAN, Yuanzhi XU, Yanshu CHU, D. AROLA, Bingbing AN, Dongsheng ZHANG. A toughening strategy of the glass composite with a laminated interlocking feature[J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(7): 1315-1330.
[1] | WEGST, U. G. K., BAI, H., SAIZ, E., TOMSIA, A. P., and RITCHIE, R. O. Bioinspired structural materials. Nature Materials, 14, 23–36 (2015) |
[2] | RITCHIE, R. O. The conflicts between strength and toughness. Nature Materials, 10, 817–822 (2011) |
[3] | MEYERS, M. A., MCKITTRICK, J., and CHEN, P. Y. Structural biological materials: critical mechanics-materials connections. Science, 339, 773–779 (2013) |
[4] | KOESTER, K. J., AGER, J. W., and RITCHIE, R. O. The true toughness of human cortical bone measured with realistically short cracks. Nature Materials, 7, 672–677 (2008) |
[5] | CHEN, I. H., YANG, W., and MEYERS, M. A. Leatherback sea turtle shell: a tough and flexible biological design. Acta Biomaterialia, 28, 2–12 (2015) |
[6] | ACHRAI, B. and WAGNER, H. D. Micro-structure and mechanical properties of the turtle carapace as a biological composite shield. Acta Biomaterialia, 9, 5890–5902 (2013) |
[7] | BARTHELAT, F., TANG, H., ZAVATTIERI, P. D., LI, C. M., and ESPINOSA, H. D. On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. Journal of the Mechanics and Physics of Solids, 55, 306–337 (2007) |
[8] | BARTHELAT, F. Architectured materials in engineering and biology: fabrication, structure, mechanics and performance. International Materials Reviews, 60, 413–430 (2015) |
[9] | MEYERS, M. A., CHEN, P. Y., LIN, A. Y. M., and SEKI, Y. Biological materials: structure and mechanical properties. Progress in Materials Science, 53, 1–206 (2008) |
[10] | FRATZL, P., KOLEDNIK, O., FISCHER, F. D., and DEAN, M. N. The mechanics of tessellations — bioinspired strategies for fracture resistance. Chemical Society Reviews, 45, 252–267 (2016) |
[11] | BARTHELAT, F., YIN, Z., and BUEHLER, M. J. Structure and mechanics of interfaces in biological materials. Nature Reviews Materials, 1, 16007 (2016) |
[12] | BARTHELAT, F. and RABIEI, R. Toughness amplification in natural composites. Journal of the Mechanics and Physics of Solids, 59, 829–840 (2011) |
[13] | BARTHELAT, F. Designing nacre-like materials for simultaneous stiffness, strength and toughness: optimum materials, composition, microstructure and size. Journal of the Mechanics and Physics of Solids, 73, 22–37 (2014) |
[14] | BEGLEY, M. R., PHILIPS, N. R., COMPTON, B. G., WILBRINK, D. V., RITCHIE, R. O., and UTZ, M. Micromechanical models to guide the development of synthetic ‘brick and mortar’ composites. Journal of the Mechanics and Physics of Solids, 60, 1545–1560 (2012) |
[15] | ESPINOSA, H. D., RIM, J. E., BARTHELAT, F., and BUEHLER, M. J. Merger of structure and material in nacre and bone — perspectives on de novo biomimetic materials. Progress in Materials Science, 54, 1059–1100 (2009) |
[16] | JACKSON, A. P., VINCENT, J. F. V., TURNER, R. M., and ALEXANDER, R. M. The mechanical design of nacre. Proceedings of the Royal Society of London. Series B, 234, 415–440 (1988) |
[17] | WANG, R. Z., SUO, Z. G., EVANS, A. G., YAO, N., and AKSAY, I. A. Deformation mechanisms in nacre. Journal of Materials Research, 16, 2485–2493 (2001) |
[18] | SONG, F. and BAI, Y. L. Effects of nanostructures on the fracture strength of the interfaces in nacre. Journal of Materials Research, 18, 1741–1744 (2003) |
[19] | CUI, S. K., YANG, Z. Y., and LU, Z. X. An analytical model for the bio-inspired nacreous composites with interlocked “brick-and-mortar” structures. Composites Science and Technology, 193, 108131 (2020) |
[20] | BONDERER, L. J., STUDART, A. R., and GAUCKLER, L. J. Bioinspired design and assembly of platelet reinforced polymer films. Science, 319, 1069–1073 (2008) |
[21] | YIN, Z., HANNARD, F., and BARTHELAT, F. Impact-resistant nacre-like transparent materials. Science, 364, 1260–1263 (2019) |
[22] | TAN, G. Q., ZHANG, J., ZHENG, L., JIAO, D., LIU, Z. Q., ZHANG, Z. F., and RITCHIE, R. O. Nature-inspired nacre-like composites combining human tooth-matching elasticity and hardness with exceptional damage tolerance. Advanced Materials, 31, e1904603 (2019) |
[23] | LI, Y. N., ORTIZ, C., and BOYCE, M. C. Bioinspired, mechanical, deterministic fractal model for hierarchical suture joints. Physical Review E, 85, 031901 (2012) |
[24] | LI, Y. N., ORTIZ, C., and BOYCE, M. C. A generalized mechanical model for suture interfaces of arbitrary geometry. Journal of the Mechanics and Physics of Solids, 61, 1144–1167 (2013) |
[25] | LI, Y. N., ORTIZ, C., and BOYCE, M. C. Stiffness and strength of suture joints in nature. Physical Review E, 84, 062904 (2011) |
[26] | JIANG, P., ZHANG, S. H., YANG, H., and LI, Y. Suture interface inspired self-recovery architected structures for reusable energy absorption. ACS Applied Materials & Interfaces, 15, 43102–43110 (2023) |
[27] | MIURA, T., PERLYN, C. A., KINBOSHI, M., OGIHARA, N., KOBAYASHI-MIURA, M., MORRISS-KAY, G. M., and SHIOTA, K. Mechanism of skull suture maintenance and interdigitation. Journal of Anatomy, 215, 642–655 (2009) |
[28] | LEE, N., HORSTEMEYER, M. F., RHEE, H., NABORS, B., LIAO, J., and WILLIAMS, L. N. Hierarchical multiscale structure-property relationships of the red-bellied woodpecker (melanerpes carolinus) beak. Journal of the Royal Society Interface, 11, 20140274 (2014) |
[29] | LIN, E., LI, Y. N., WEAVER, J. C., ORTIZ, C., and BOYCE, M. C. Tunability and enhancement of mechanical behavior with additively manufactured bio-inspired hierarchical suture interfaces. Journal of Materials Research, 29, 1867–1875 (2014) |
[30] | CORDISCO, F. A., ZAVATTIERI, P. D., HECTOR, L. G., and CARLSON, B. E. Mode I fracture along adhesively bonded sinusoidal interfaces. International Journal of Solids and Structures, 83, 45–64 (2016) |
[31] | LIN, E., LI, Y. N., ORTIZ, C., and BOYCE, M. C. 3D printed, bio-inspired prototypes and analytical models for structured suture interfaces with geometrically-tuned deformation and failure behavior. Journal of the Mechanics and Physics of Solids, 73, 166–182 (2014) |
[32] | MIRKHALAF, M., DASTJERDI, A. K., and BARTHELAT, F. Overcoming the brittleness of glass through bio-inspiration and micro-architecture. Nature Communications, 5, 3166 (2014) |
[33] | MALIK, I. A. and BARTHELAT, F. Toughening of thin ceramic plates using bioinspired surface patterns. International Journal of Solids and Structures, 97-98, 389–399 (2016) |
[34] | KATZ, Z., YAZDANI SARVESTANI, H., GHOLIPOUR, J., and ASHRAFI, B. Bioinspired hierarchical ceramic sutures for multi-modal performance. Advanced Materials Interfaces, 10, 2300098 (2023) |
[35] | MALIK, I. A., MIRKHALAF, M., and BARTHELAT, F. Bio-inspired “jigsaw”-like interlocking sutures: modeling, optimization, 3D printing and testing. Journal of the Mechanics and Physics of Solids, 102, 224–238 (2017) |
[36] | MALIK, I. A. and BARTHELAT, F. Bioinspired sutured materials for strength and toughness: pullout mechanisms and geometric enrichments. International Journal of Solids and Structures, 138, 118–133 (2018) |
[37] | MIRKHALAF, M. and BARTHELAT, F. Design, 3D printing and testing of architectured materials with bistable interlocks. Extreme Mechanics Letters, 11, 1–7 (2017) |
[38] | LI, X. R., JIANG, P. F., NIE, M. H., LIU, Z. L., LIU, M. Q., QIU, Y. M., CHEN, Z. K., and ZHANG, Z. H. Enhanced strength-ductility synergy of laser additive manufactured stainless steel/Ni-based superalloy dissimilar materials characterized by bionic mechanical interlocking structures. Journal of Materials Research and Technology, 26, 4770–4783 (2023) |
[39] | GAO, C., HASSELDINE, B. P. J., LI, L., WEAVER, J. C., and LI, Y. N. Amplifying strength, toughness, and auxeticity via wavy sutural tessellation in plant seedcoats. Advanced Materials, 30, e1800579 (2018) |
[40] | SIEGMUND, T., BARTHELAT, F., CIPRA, R., HABTOUR, E., and RIDDICK, J. Manufacture and mechanics of topologically interlocked material assemblies. Applied Mechanics Reviews, 68, 040803 (2016) |
[41] | WANG, Q., DING, L., WANG, S., AROLA, D., AN, B. B., and ZHANG, D. S. Strong and tough glass composites with a partially segmented micro-architecture. Composites Science and Technology, 244, 110301 (2023) |
[42] | AMINI, A., TIRGAR, P., BAHMANI, A., JAFARI, M., SIAJ, M., BARTHELAT, F., and EHRLICHER, A. Nacreous glass composites with superior performance engineered through mechanical vibration and silanization. Advanced Functional Materials, 34, 2405008 (2024) |
[43] | YIN, Z., DASTJERDI, A., and BARTHELAT, F. Tough and deformable glasses with bioinspired cross-ply architectures. Acta Biomaterialia, 75, 439–450 (2018) |
[44] | ZHANG, X., WU, K. J., NI, Y., and HE, L. H. Anomalous inapplicability of nacre-like architectures as impact-resistant templates in a wide range of impact velocities. Nature Communications, 13, 7719 (2022) |
[45] | WANG, W. Z., SUN, Y. P., LU, Y. Y., WANG, J. P., CAO, Y., and ZHANG, C. Tensile behavior of bio-inspired hierarchical suture joint with uniform fractal interlocking design. Journal of the Mechanical Behavior of Biomedical Materials, 113, 104137 (2021) |
[46] | BARTHELAT, F., DASTJERDI, A. K., and RABIEI, R. An improved failure criterion for biological and engineered staggered composites. Journal of the Royal Society Interface, 10, 20120849 (2013) |
[47] | CHINTAPALLI, R. K., BRETON, S., DASTJERDI, A. K., and BARTHELAT, F. Strain rate hardening: a hidden but critical mechanism for biological composites? Acta Biomaterialia, 10, 5064–5073 (2014) |
[48] | JI, B. H. and GAO, H. J. Mechanical properties of nanostructure of biological materials. Journal of the Mechanics and Physics of Solids, 52, 1963–1990 (2004) |
[49] | AN, B., SUN, W., and ZHANG, D. S. Role of soft bi-layer coating on the protection of turtle carapace. Journal of Biomechanics, 126, 110618 (2021) |
[50] | JALALVAND, M., CZÉL, G., FULLER, J. D., WISNOM, M. R., CANAL, L. P., GONZÁLEZ, C. D., and LLORCA, J. Energy dissipation during delamination in composite materials — an experimental assessment of the cohesive law and the stress-strain field ahead of a crack tip. Composites Science and Technology, 134, 115–124 (2016) |
[51] | YANG, H., SINHA, S. K., FENG, Y., MCCALLEN, D. B., and JEREMIĆ, B. Energy dissipation analysis of elastic-plastic materials. Computer Methods in Applied Mechanics and Engineering, 331, 309–326 (2018) |
[1] | . [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(1): 63-80. |
[2] | Zixing LU, Fan XIE, Qiang LIU, Zhenyu YANG. Surface effects on mechanical behavior of elastic nanoporous materials under high strain[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(7): 927-938. |
[3] | Zi-xing LU;Ji-xiang HUANG;Ze-shuai YUAN. Effects of microstructure on uniaxial strength asymmetry of open-cell foams[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(1): 37-46. |
[4] | 卢子兴;刘强;陈鑫. Analysis and simulation for tensile behavior of anisotropic open-cell elastic foams[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(11): 1437-1446. |
[5] | 杨骁 杨峥 文群. Bending of simply-supported circular timber beam strengthened with fiber reinforced polymer[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(3): 297-310. |
[6] | A.S.J.Al-Saif;朱正佑. UPWIND LOCAL DIFFERENTIAL QUADRATURE METHOD FOR SOLVING COUPLED VISCOUS FLOW AND HEAT TRANSFER EQUATIONS[J]. Applied Mathematics and Mechanics (English Edition), 2004, 25(10): 1130-1138. |
[7] | 袁应龙;卢子兴. MODULUS PREDICTION AND DISCUSSION OF REINFORCED SYNTACTIC FOAMS WITH COATED HOLLOW SPHERICAL INCLUSIONS[J]. Applied Mathematics and Mechanics (English Edition), 2004, 25(5): 528-535. |
[8] | 龚克. BENDING THEORIES FOR BEAMS AND PLATES WITH SINGLE GENERALIZED DISPLACEMENT[J]. Applied Mathematics and Mechanics (English Edition), 2000, 21(9): 1091-1098. |
[9] | . [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(5): 781-794. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||