Applied Mathematics and Mechanics (English Edition) ›› 1981, Vol. 2 ›› Issue (1): 1-14.
• 论文 • 下一篇
叶开沅, 汤任基, 甄继庆
Yeh Kai-yuan, Tang Ren-ji, Zhen Ji-qing
摘要: On the basis of the stepped reduction method suggested in [1], we investigate the problem of the bending of elastic circular ring of non-homogeneous and variable cross section under the actions of arbitrary loads. The general solution of this problem is obtained so that it can be used for the calculations of strength and rigidity of practical problems such as arch, tunnel etc. In order to examine results of this paper and explain the application of this new method, an example is brought out at the end of this paper.Circular ring and arch are commonly used structures in engineering. Timo-shenko, S.[2], Barber, J. R.[3], Tsumura Rimitsuul et al. have studied these problems of bending, but, so far as we know, it has been solely restricted to the general solution of homogeneous uniform cross section ring. The only known solution for the problems with variable cross section ones has been solely restricted to the solution of special case of flexural rigidity in linear function of coordinates. On account of fundamental equations of the non-homogeneous variable cross section problem being variable coefficients, it is very difficult to solve them. In this paper, we use the stepped reduction method suggested in[1] to transiorm the variable coefficient differential equation into equivalent constant coefficient one. After introducing virtual internal forces, we obtain general solution of an elastic circular ring with non-homogeneity and variable cross section under the actions of arbitrary loads.