[1] Ahmed, N., Some problems in the dynamics of nonholonomic systems, P h. D. Thesis,Quaid-i-Azam University, lslamabad, Pakistan (1986)
[2] Arnold, V. I.. Mathematical Methods of Classical Mechanics, Springer-Verlag, New York Inc. (1978).
[3] Benavent, R., Poincare-Cartan integral invariant for constrained system, Ann. Phys.,118, 2 (1979), 476-489.
[4] Cetaev, N. G., On the equations of Poirlcare, Prikl. Mai. Meh., 5(1941), 253-262.
[5] 19jukK:, Dj. S., Integral invariants in classical nonconservative mechanics, Acta Mechanica, 23, 3 (1975), 291-296.
[6] Dobronravove, V. V., Integral-invariants of the analytical mechanics in nonholonomic coordinates, Dokl. Akad. Nauk. SSSR, XLVI (1945), 196-199.
[7] Duan, L. and L. Young, About basic integral variants of holonomic nonconservative dynamical systems, A cta Mechanica Siniea, 7, 2 ( 1991), 178-185.
[8] Gantmacher, F. R., Lectures in Analytical Mechanics, Mir Publishers, Moscow (1970).
[9] Ghori, Q. K. and M. Hussain, Generalization of Hamilton-Jacobi theorem, Z. Angew.Math. Phys., 25 (1974), 536-540.
[10] Ghori. Q. K. and N. Ahmed, Hamilton's principle for nonholonomic systems, Z.Angew. Math. Mech.~74, 2 (1994), 137-140.
[11] Pars, L. A., A Treatise on Analyiical Dynamics, Heinemann London (1968).
[12] Poiner6, H., Sur nue forme nouvelle des equations de la mecanique, C. R. Acad. Sci.,Paris, 132 (1901), 369-371.
[13] Vujanovic, B., Conservation laws of dynamical systems via d'Alember's principle, Int.J. Non-Linear Mech., 13 (1978), 185-197.
[14] Whittaker, E. T., d Treatise on AnaO,tical Dynamics of Particles and Rigid Bodies,Cambridge University Press (1927) |