[1] J.P.Aubin and I.Ekeland.Applied Nonlinear Analysis.John Wiley & Sons, New York(1984).
[2] C.Baiocchi and A.Capelo.Variational and Quasi-variational Inequalities, John Wiley &Sons, New York (1984).
[3] D.Kinderlehrer and G.Stampacchi.An Introduction to Variational Inequalities, Acad.Press, New York (1980).
[4] D.Chan and J.S.Pang.The generalized quasi-variational inequalities, Math.Oper.Res..7 (1982), 211~222.
[5] P.T.Harker and J.S.Pang, Finite-dimensional variational inequality and nonlinearcomplementarity problems: A survey of theory, algorithms and applications, Math.Program, Ser.B.48 (1990).161~220.
[6] M.A.Noor.General variational inequalities.Appl.Math Lett, 1(1988), 119~122.
[7] M.A.Noor, General algorithm and sensitivity for variational inequallties, J.Appl.Math.Stoch.Anal., 5 (1992), 29~42.
[8] M.A.Noor, K.I.Noor and T.M.Rassias, Some aspects of variational inequalities, JComout.Appl.Math..47 (1993), 285~312.
[9] J.C.Yao, General variational inequalities in Banach spaces, Appl.Math- Lett., 5, 1(1992), 51~54.
[10] J.C.Yao, on the general variational inequalities, J.Malh.Anal.Appl., 174 (1993),550~555.
[11] J.C.Yao and J.S.Guo, Variational and generalized variational inequalities withdiscontinuous mappings, J.Math.Anal.Appl., 182 (1994), 371~392.
[12] X.P.Ding and E.Tarafdar, Generalized nonlinear variational inequalities with non-monotone set-valued mappings, Appl.Math.LeIt., 7, 4 (l994), 5~11.
[l3] X.P.Ding, A class of generalized variational inequalities and its Applications, J.SichuanNormal Univ., 17, 6 (1994), 10~16.(in Chinese)
[14] X.P.Ding, Existence of solutions for a class of generalized variational inequalities, J.Yantai Univ., 2 (1995).15~22.(in Chinese)
[15] X.P.Ding, Implicit variational inequalities with discontinuous mappings.J.SichuanNormal Univ., 18, 2 (1995), 8~15.(in Chinese)
[16] J.Parida, M.Sahoo and A.Kumar, A variational-like inequality problem, Bull.Austral.Math.Soc., 39 (1989 ).225~231.
[17] N.H.Dien.Some remarks on variational-like inequalities' Bull.Austral.Math.Soc., 46(1992).335~342.
[18] A.H.Siddiqi, A.Khaliq and Q.H.Ansari, On variational-like inequalities.Ann.Sci.Math.Quebec,18, 1 (1994), 95~104.
[19] X.P.Ding, Quasi-variational inequalities and social equilibrium.Appl.Math.and Mech.(Enghsh Ed.), 12, 7 (1991), 639~646.
[20] W.W.Hogan Point-to-set maps in mathematical programming.SLAM Rev. 15 (1973),591~603.
[21] M.H.Shih and K.K.Tan- Covering theorems of convex sets related fixed pointtheorems, in Nonlmear and Conve.Analysis,Marcel Dekker Inc.New York, (1987),235~244.
[22] J.X.Zhou and G.Chen, Diagonal convexity conditions for problems in convex analysisand quasi-variational inequalities, J.Math.Anal.Appl., 132 (1988) 213~225.
[23] H.Kneser.Sur un theoeme fondamantal de la theorie des jeus.C.R.Acad.Sci..Paris,234 (1952)- 2418~2420.
[24] J.C.Yao, Gemeralized-quasi-variational inequality problems with discontinuousmappings, Math.Oper..Res., 20.2 (1995), 465~478.
[25] O.H.Merrill, Applicalions and extensions of an algorithm that computes fixed points ofcertain upper semicontinuous point-to-set mappings, Ph.D Thesis.Univ.of Michigan,Ann Arbor, MI.(1972). |