[1] Bolotin V V. The Dynamic Stability of Elastic System[M]. San Francisco:Holden Day, 1964. [2] CHENG Chang-jun, ZHANG Neng-hue. Chaotic and hyperchaotic behavior of viscoelastic rectangular plates under a transverse periodic load[J]. Acta Mechanica Sinica, 1998,30(6):690-699.(in Chinese) [3] ZHANG Neng-hui, CHENG Chang-jun. Chaotic behavior of viscoelastic plates in supersonic flow [A]. In: CHIEN Wei-zang, CHENG Chang-jun, DAI Shi-qiang, et al, Eds. Proc 3rd Inter Confon Nonlinear Mech[C]. Shanghai: Shanghai University Press, 1998, 432-436. [4] ZHU Yuan-yuan, ZHANG Neng-hui, Miura F. Dynamical behavior of viscoelastic rectangular plates[A]. In: CHIEN Wei-zang, CHENGChang-jun, DAI Shi-qiang, et al, Eds. Proc 3rd Inter Confon Nonlinear Mech[C]. Shanghai: Shanghai University Press, 1998, 445-450. [5] ZHANG Neng-hui, CHENG Chang-jun. Chaotic and periodic behavior of viscoelastic rectangular plates under in-plane periodic excitations[J]. Acta Mechanica Sinca Solida, 2000,21(S Issue):160-164.(in Chinese) [6] CHEN Li-qun, CHENG Chang-jun. Controlling chaotic oscillations of viscoelastic plates by the linearization via output feedback[J]. Applied Mathematics and Mechanics(English Edition ) ,1999,20(12): 1324-1330. [7] Aboudi J, Cederbaum G, Elishakoff I. Dynamic stability analysis of viscoelastic plates by Liapunov exponents[J]. J Sound Vib, 1990, 139(3):459-467. [8] Touati D, Cederbaum G. Dynamic stability of nonlinear viscoelastic plates[J]. Iht J Solids Struct,1994, 31(17): 2367-2376. [9] Wojciech S, Klosowicz M. Nonlinear vibration of a simply supported viscoelastic inextensible beam and comparison of methods[J]. Acta Mechanica, 1990, 85(1): 43-54. [10] CHEN Li-qun, CHENG Chang-jun. Dynamical behavior of nonlinear viscoelastic columns based on 2-order Galerkin truncation[J]. Mech Res Corem, 2000, 27(4): 413-419. [11] ZHANG Neng-hui, CHENG Chang-jun. Non-linear mathematical model of viscoelastic thin plates with its applications[J]. Comput Methods Appl Mech Engng, 1998,165(4):307-319. |