[1] Prandtl, L., Oswatitsch, K., and Wieghardt, K. Introduction to Fluid Mechanics, Science Press, 295-298 (1969)
[2] Drazin, P. G. and Reid, W. H. Hydrodynamic Stability, 1st ed., Cambridge University Press, 1-24 (1981)
[3] Schlichting, H. Boundary-Layer Theory, 7th ed., McGraw-Hill Company (1979)
[4] McQuivey, R. S. and Richardson, E. V. Some turbulence measurements in open channel flow. J. Hyd. Div., Proc., Amer. Soc. Civil Engrs., 95(HY1), 209-223 (1969)
[5] Esfahanian, V., Hejranfar, K., and Sabetghadam, F. Linear and nonlinear PSE for stability analysis of the Blasius boundary layer using compact scheme. Journal of Fluids Engineering, 123(3), 545-550 (2001)
[6] Li, D. M., Zhang, H. P., and Gao, Y. X. Series perturbations approximate solutions to N-S equations and modification to asymptotic expansion matched method. Applied Mathematics and Mechanics (English Edition), 23(8), 963-972 (2002) DOI 10.1007/BF02437802
[7] Sumner, D. and Akosile, O. O. On uniform planar shear flow around a circular cylinder at sub-critical Reynolds number. Journal of Fluids and Structures, 18, 441-454 (2003)
[8] Wang, Z., Yeo, K. S., and Khoo, B. C. Spatial direct numerical simulation of transitional boundary layer over compliant surfaces. Computers and Fluid, 34, 1062-1095 (2005)
[9] Huang, Z. F. and Zhou, H. Inflow conditions for spatial direct numerical simulation of turbulent boundary layers. Science in China Series G: Physics, Mechanics and Astronomy, 51(8), 1106-1115 (2008)
[10] Ehrenstein, U., Nagata, M., and Rincon, F. Two-dimensional nonlinear plane Poiseuille-Couette flow homotopy revisited. Physics of Fluids, 20(6), 064103 (2008)
[11] Gires, P. Y., Danker, G., and Misbah, C. Hydrodynamic interaction between two vesicles in a linear shear flow: asymptotic study. Physical Review, 86(1), 011408 (2012)
[12] Kádár, R. and Balan, C. Transient dynamics of the wavy regime in Taylor-Couette geometry. European Journal of Mechanics-B/Fluids, 31, 158-167 (2012)
[13] Ashrafi, N. and Hazbavi, A. Flow pattern and stability of pseudoplastic axial Taylor-Couette flow. International Journal of Non-Linear Mechanics, 47(8), 905-917 (2012)
[14] Yi, J. Fluid Dynamics, Higer Education Press, Beijing, 274-280 (1982)
[15] Qian, W. Singular Perturbation Theory and Its Application in Mechanics, Science Press, Beijing, 209-216 (1981)
[16] Liu, S. and Liu, S. Special Functions, China Meteorological Press, Beijing, 403-508 (1988)
[17] Wang, Z. and Guo, D. Special Functions, Science Press, Beijing, 381-506 (1979)
[18] Yalin, M. S. Mechanics of Sediment Transport, 2nd ed., Pergamon Press, California, 1-60 (1977)
[19] Qian, N. and Wan, Z. H. Mechanics of Sediment Transport, Science Press, Beijing, 82-110 (1986) |