[1] Loehman, R., Corral, E., Dumm, H. P., Kotula, P., and Tandon, R. Ultra High Temperature Ceramics for Hypersonic Vehicle Applications, Sandia Corporation, Albuquerque, 1-46 (2006)
[2] Opeka, M. M., Talmy, I. G., Wuchina, E. J., Zaykoski, J. A., and Causey, S. J. Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. Journal of the European Ceramic Society, 19(13-14), 2405-2414 (1999)
[3] Levine, S. R., Opila, E. J., Halbig, M. C., Kiser, J. D., Singh, M., and Salem, J. A. Evaluation of ultra-high temperature ceramics for aeropropulsion use. Journal of the European Ceramic Society, 22(14-15), 2757-2767 (2002)
[4] Fahrenholtz, W. G., Hilmas, G. E., Talmy, I. G., and Zaykoski, J. A. Refractory diborides of zirconium and hafnium. Journal of the American Ceramic Society, 90(5), 1347-1364 (2007)
[5] Guo, S. Q., Kagawa, Y., and Nishimura, T. Mechanical behavior of two-step hot-pressed ZrB2- based composites with ZrSi2. Journal of the European Ceramic Society, 29(4), 787-794 (2009)
[6] Cheng, T. B., Li, W. G., and Fang, D. N. Thermal shock resistance of ultra-high-temperature ceramics under aerodynamic thermal environments. AIAA Journal, 51(4), 840-848 (2013)
[7] Cheng, T. B., Li, W. G., Zhang, C. Z., and Fang, D. N. Unified thermal shock resistance of ultrahigh temperature ceramics under different thermal environments. Journal of Thermal Stresses, 37(1), 14-33 (2014)
[8] Cheng, T. B., Li, W. G., Lu, W., Shi, Y. S., and Fang, D. N. Thermal shock resistance of ultrahigh- temperature ceramic thermal protection system. Journal of Spacecraft and Rockets, 51(3), 986-990 (2014)
[9] Cheng, C. M. Resistance to thermal shock. Journal of the American Rocket Society, 21(6), 147-153 (1951)
[10] Kingery, W. D. Factors affecting thermal stress resistance of ceramic materials. Journal of the American Ceramic Society, 38(1), 3-15 (1955)
[11] Hasselman, D. P. H. Elastic energy at fracture and surface energy as design criteria for thermal shock. Journal of the American Ceramic Society, 46(11), 535-540 (1963)
[12] Hasselman, D. P. H. Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics. Journal of the American Ceramic Society, 52(11), 600-604 (1969)
[13] Wang, H. and Singh, R. N. Thermal shock behaviour of ceramics and ceramic composites. International Materials Reviews, 39(6), 228-244 (1994)
[14] Li, W. G., Cheng, T. B., Zhang, R. B., and Fang, D. N. Properties and appropriate conditions of stress reduction factor and thermal shock resistance parameters for ceramics. Applied Mathematics and Mechanics (English Edition), 33(11), 1351-1360 (2012) DOI 10.1007/s10483-012-1627-x
[15] Collin, M. and Rowcliffe, D. Analysis and prediction of thermal shock in brittle materials. Acta Materialia, 48(8), 1655-1665 (2000)
[16] Zhang, X. H., Xu, L., Du, S. Y., Han, W. B., Han, J. C., and Liu, C. Y. Thermal shock behavior of SiC-whisker-reinforced diboride ultrahigh-temperature ceramics. Scripta Materialia, 59(1), 55-58 (2008)
[17] Liang, J., Wang, C., Wang, Y., Jing, L., and Luan, X. The influence of surface heat transfer conditions on thermal shock behavior of ZrB2-SiC-AlN ceramic composites. Scripta Materialia, 61(6), 656-659 (2009)
[18] Song, F., Meng, S. H., Xu, X. H., and Shao, Y. F. Enhanced thermal shock resistance of ceramics through biomimetically inspired nanofins. Physical Review Letters, 104(12), 125502 (2010)
[19] Sato, S., Sato, K., Imamura, Y., and Kon, J. I. Determination of the thermal shock resistance of graphite by arc discharge heating. Carbon, 13(4), 309-316 (1975)
[20] Schubert, C., Bahr, H. A., and Weiss, H. J. Crack propagation and thermal shock damage in graphite disks heated by moving electron beam. Carbon, 24(1), 21-28 (1986)
[21] Schneider, G. A. and Petzow, G. Thermal shock testing of ceramics — a new testing method. Journal of the American Ceramic Society, 74(1), 98-102 (1991)
[22] Meng, S. H., Qi, F., Chen, H. B., Wang, Z., and Bai, G. H. The repeated thermal shock behaviors of a ZrB2-SiC composite heated by electric resistance method. International Journal of Refractory Metals and Hard Materials, 29(1), 44-48 (2011)
[23] Yang, L., Zhou, Y. C., and Lu, C. Damage evolution and rupture time prediction in thermal barrier coatings subjected to cyclic heating and cooling: an acoustic emission method. Acta Materialia, 59(17), 6519-6529 (2011)
[24] Zhang, R. B., Chen, G. Q., and Han, W. B. Synthesis, mechanical and physical properties of bulk Zr2Al4C5 ceramic. Materials Chemistry and Physics, 119(1-2), 261-265 (2010)
[25] Han, J. C. and Wang, B. L. Thermal shock resistance of ceramics with temperature-dependent material properties at elevated temperature. Acta Materialia, 59(4), 1373-1382 (2011)
[26] Han, J. C. andWang, B. L. Thermal shock resistance enhancement of functionally graded materials by multiple cracking. Acta Materialia, 54(4), 963-973 (2006)
[27] Chang, D. M. and Wang, B. L. Transient thermal fracture and crack growth behavior in brittle media based on non-Fourier heat conduction. Engineering Fracture Mechanics, 94, 29-36 (2012)
[28] Dassault Systemes Simulia Corporation. Heat transfer and thermal-stress analysis. Abaqus Analysis User’s Manual, Dassault Systemes Simulia Corporation, Providence (2012)
[29] Li, W. G., Wang, R. Z., Li, D. Y., and Fang, D. N. A model of temperature-dependent Young’s modulus for ultrahigh temperature ceramics. Physics Research International, 2011, 791545 (2011)
[30] Li, W. G., Yang, F., and Fang, D. N. The temperature-dependent fracture strength model for ultra-high temperature ceramics. Acta Mechanica Sinica, 26(2), 235-239 (2010) |