[1] Feng, K. Difference schemes for Hamiltonian formalism and symplectic geometry. Journal of Computational Mathematics, 4, 279-289(1986)
[2] Ruth, R. D. A canonical integration technique. IEEE Transactions on Nuclear Science, 30, 2669-2671(1983)
[3] Zhong, W. X. and Williams, F. W. A precise time step integration method. Proceedings of the Institution of Mechanical Engineers, 208, 427-430(1994)
[4] Zhong, W. X. On precise integration method. Journal of Computational and Applied Mathematics, 163, 59-78(2004)
[5] Saito, S., Sugiura, H., and Mitsui, T. Family of symplectic implicit Runge-Kutta formulae. BIT Numerical Mathematics, 32, 539-543(1992)
[6] Sanz-Serna, J. M. and Abia, L. Order conditions for canonical Runge-Kutta schemes. SIAM Journal on Numerical Analysis, 28, 1081-1096(1991)
[7] Abia, L. and Sanz-Serna, J. M. Partitioned Runge-Kutta methods for separable Hamiltonian problems. Mathematics of Computation, 60, 617-634(1993)
[8] Monovasilis, T., Kalogiratou, Z., and Simos, T. E. Symplectic partitioned Runge-Kutta methods with minimal phase-lag. Computer Physics Communications, 181, 1251-1254(2010)
[9] Okunbor, D. and Skeel, R. D. An explicit Runge-Kutta-Nyström method in canonical if and only if its adjointis explicit. SIAM Journal on Numerical Analysis, 29, 521-527(1992)
[10] Franco, J. M. and Gómez, I. Symplectic explicit methods of Runge-Kutta-Nyström type for solving perturbed oscillators. Journal of Computational and Applied Mathematics, 260, 482-493(2014)
[11] Simos, T. E. and Vigo-Aguiar, J. Exponentially fitted symplecitic integrator. Physical Reviwe E, 67, 016701(2003)
[12] Simos, T. E. Exponentially-fitted Runge-Kutta-Nyström method for the numerical solution of initial-value problems with oscillating solutions. Applied Mathematics Letters, 15, 217-225(2002)
[13] Marsden, J. E. and West, M. Discrete mechanics and variational integrators. Acta Numerica, 10, 357-514(2001)
[14] Lew, A., Marsden, J. E., Ortiz, M., and West, M. Variational time integrators. International Journal for Numerical Methods in Engineering, 60, 153-212(2004)
[15] Kane, C., Marsden, J. E., and Ortiz, M. Symplectic-energy-momentum preserving variational integrators. Journal of Mathematical Physics, 40, 3353-3371(1999)
[16] Cortés, J. and Martínez, S. Non-holonomic integrators. Nonlinearity, 14, 1365-1392(2001)
[17] Leyendecker, S., Marsden, J. E., and Ortiz, M. Variational integrators for constrained dynamical systems. Journal of Applied Mathematics and Mechanics, 88, 677-708(2008)
[18] Leyendecker, S., Ober-Blöbaum, S., Marsden, J. E., and Ortiz, M. Discrete mechanics and optimal control for constrained systems. Optimal Control Applications and Methods, 31, 505-528(2010)
[19] Kobilarov, M., Marsden, J. E., and Sukhatme, G. S. Geometric discretization of nonholonomic systems with symmetries. Discrete and Continuous Dynamical Systems Series S, 1, 61-84(2010)
[20] Kane, C., Marsden, J. E., Ortiz, M., and West, M. Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems. International Journal for Numerical Methods in Engineering, 49, 1295-1325(2000)
[21] Bou-Rabee, N. and Owhadi, H. Stochastic variational integrators. IMA Journal of Numerical Analysis, 29, 421-443(2009)
[22] Bou-Rabee, N. and Owhadi, H. Long-run accuracy of variational integrators in the stochastic context. SIAM Journal on Numerical Analysis, 48, 278-297(2010)
[23] Mata, P. and Lew, A. J. Variational integrators for the dynamics of thermo-elastic solids with finite speed thermal waves. Journal of Computational Physics, 257, 1423-1443(2014)
[24] Ober-Blöbaum, S., Tao, M., Cheng, M., Owhadi, H., and Marsden, J. E. Variational integrators for electric circuits. Journal of Computational Physics, 242, 498-530(2013)
[25] Webb., S. D. Symplectic integration of magnetic systems. Journal of Computational Physics, 270, 570-576(2014)
[26] Lall, S. and West, M. Discrete variational Hamiltonian mechanics. Journal of Physics A, 39, 5509-5519(2006)
[27] Leok, M. and Zhang, J. Discrete Hamiltonian variational integrators. IMA Journal of Numerical Analysis, 31, 1497-1532(2011)
[28] Luo, E., Huang, W. J., and Zhang, H. X. Unconventional Hamilton-type variational principle in phase space and symplectic algorithm. Science China Physics, Mechanics and Astronomy, 46, 248-258(2003)
[29] Gao, Q., Tan, S. J., Zhang, H. W., and Zhong, W. X. Symplectic algorithms based on the principle of least action and generating functions. International Journal for Numerical Methods in Engineering, 89, 438-508(2012) |