[1] Qin, Y. Y., Deng, Z. C., and Hu, W. P. Structure-preserving properties of three differential schemes for oscillator system. Applied Mathematics and Mechanics (English Edition), 35, 783-790(2014) DOI 10.1007/s10483-014-1828-6
[2] Balakirev, V. A., Buts, V. A., Tolstoluzhsky, A. P., and Turkin, Y. A. Nonlinear dynamics of a mathematical pendulum with a vibrating hanger (in Russian). Ukrainskii Fizicheskii Zhurnal, 32, 1270-1274(1987)
[3] Moauro, V. and Negrini, P. Chaotic trajectories of a double mathematical pendulum. Journal of Applied Mathematics and Mechanics, 62, 827-830(1998)
[4] Martynyuk, A. A. and Nikitina, N. V. The theory of motion of a double mathematical pendulum. International Applied Mechanics, 36, 1252-1258(2000)
[5] Martynyuk, A. A. and Nikitina, N. V. Regular and chaotic motions of mathematical pendulums. International Applied Mechanics, 37, 407-413(2001)
[6] Shaikhet, L. Stability of difference analogue of linear mathematical inverted pendulum. Discrete Dynamics in Nature and Society, 3, 215-226(2005)
[7] Hatvani, L. Stability problems for the mathematical pendulum. Periodica Mathematica Hungarica, 56, 71-82(2008)
[8] Dittrich, W. The mathematical pendulum from Gauss via Jacobi to Riemann. Annalen der Physik, 18, 381-390(2009)
[9] Jerman, B. and Hribar, A. Dynamics of the mathematical pendulum suspended from a moving mass. Tehni?ki Vjesnik, 20, 59-64(2013)
[10] Feng, K. On difference schemes and symplectic geometry. Proceeding of the 1984 Beijing Symposium on Differential Geometry and Differential Equations, Science Press, Beijing, 42-58(1984)
[11] Feng, K. Difference-schemes for Hamiltonian-formalism and symplectic-geometry. Journal of Computational Mathematics, 4, 279-289(1986)
[12] Hairer, E., Lubich, C., and Wanner, G. Geometric Numerical Integration:Structure Preserving Algorithms for Ordinary Differential Equations, Springer-Verlag, Berlin (2002)
[13] Bridges, T. J. Multi-symplectic structures and wave propagation. Mathematical Proceedings of the Cambridge Philosophical Society, 121, 147-190(1997)
[14] Hu, W. P., Deng, Z. C., Han, S. M., and Zhang, W. R. Generalized multi-symplectic integrators for a class of Hamiltonian nonlinear wave PDEs. Journal of Computational Physics, 235, 394-406(2013)
[15] Störmer, C. Sur les trajectoires des corpuscules électrisés dans l'espace sous l'action du magnétisme terrestre, avec application aux aurores boréales. Le Radium, 9, 395-399(1912)
[16] Verlet, L. Computer experiments on classical fluids I:thermodynamical properties of LennardJones molecules. Physical Review, 159, 98-103(1967)
[17] Rivlin, L. A. Acceleration of neutrons in a scheme of a tautochronous mathematical pendulum (physical principles). Quantum Electronics, 40, 933-934(2010)
[18] Budd, C. J. and Piggott, M. D. Geometric integration and its applications. Handbook of Numerical Analysis, 11, 35-139(2003)
[19] Terze, Z., Muller, A., and Zlatar, D. An angular momentum and energy conserving Lie-group integration scheme for rigid body rotational dynamics originating from Störmer-Verlet algorithm. Journal of Computational and Nonlinear Dynamics, 10, 051005(2015)
[20] Hairer, E. and Lubich, C. Long-term analysis of the Störmer-Verlet method for Hamiltonian systems with a solution-dependent high frequency. Numerische Mathematik, 134, 119-138(2016)
[21] Xing, Y. F. and Yang, R. Phase errors and their correction in symplect implicit single-step algorithm (in Chinese). Acta Mechanica Sinica, 39, 668-671(2007)
[22] Görtz, P. Backward error analysis of symplectic integrators for linear separable Hamiltonian systems. Journal of Computational mathematics, 20, 449-460(2002) |