[1] Gassmann, F. Uber die elastizitat poroser medien. Vierteljahrsschr Naturforsch Ges Zürich, 96, 1-23(1961)
[2] Biot, M. A. Theory of propagation of elastic waves in a fluid-saturated porous solid:2 higher frequency range. Journal of the Acoustical Society of America, 28, 179-191(1956)
[3] Biot, M. A. Theory of propagation of elastic waves in a fluid-saturated porous solid:1 lowfrequency range. Journal of the Acoustical Society of America, 28, 168-178(1956)
[4] Biot, M. A. Mechanics of deformation and acoustic propagation in porous media. Journal of Applied Physics, 33, 1482-1498(1962)
[5] Pride, S. R., Berryman, J. G., and Harris, J. M. Seismic attenuation due to wave-induced flow. Journal of Geophysical Research Atmospheres, 109, 59-70(2004)
[6] Carcione, J. M., Morency, C., and Santos, J. E. Computational poroelasticity:a review. Geophysics, 75, A229-A243(2010)
[7] Arntsen, B. and Carcione, J. M. Numerical simulation of the Biot slow wave in water-saturated Nivelsteiner sandstone. Geophysics, 66, 890-896(2001)
[8] Dvorkin, J., Mavko, G., and Nur, A. Squirt flow in fully saturated rocks. Geophysics, 60, 97-107(1995)
[9] Mochizuki, S. Attenuation in partially saturated rocks. Journal of Geophysical Research, 87, 8598-8604(1982)
[10] White, J. E. Computed seismic speeds and attenuation in rocks with partial gas saturation. Geophysics, 40, 224-232(1975)
[11] White, J. E., Mihailova, N., and Lyakhovitsky, F. Low-frequency seismic-waves in fluid-saturated layered rocks. Journal of the Acoustical Society of America, 57, 654-659(1975)
[12] Dutta, N. C. and Odé, H. Attenuation and dispersion of compressional waves in fluid-filled porous rocks with partial gas saturation (White model):part I, Biot theory. Geophysics, 44, 1777-1788(1979)
[13] Dutta, N. C. and Odé, H. Attenuation and dispersion of compressional waves in fluid-filled porous rocks with partial gas saturation (White model):part 2, results. Geophysics, 44, 1789-1805(1979)
[14] Johnson, D. L. Theory of frequency dependent acoustics in patchy-saturated porous media. Journal of the Acoustical Society of America, 110, 682-694(2001)
[15] Ba, J., Carcione, J. M., and Nie, J. X. Biot-Rayleigh theory of wave propagation in double-porosity media. Journal of Geophysical Research Atmospheres, 116, 309-311(2011)
[16] Mavko, G. and Nur, A. Melt squirt in the asthenosphere. Journal of Geophysical Research, 80, 1444-1448(1975)
[17] Mavko, G. M. and Nur, A. Wave attenuation in partially saturated rocks. Geophysics, 44, 161-178(1979)
[18] Toms, J., Müler, T. M., Ciz, R., and Gurevich, B. Comparative review of theoretical models for elastic wave attenuation and dispersion in partially saturated rocks. Soil Dynamics & Earthquake Engineering, 26, 548-565(2006)
[19] Müler, T. M., Gurevich, B., and Lebedev, M. Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks:a review. Geophysics, 75, A147-A164(2010)
[20] Rubino, J. G. and Holliger, K. Seismic attenuation and velocity dispersion in heterogeneous partially saturated porous rocks. Geophysical Journal International, 188, 1088-1102(2012)
[21] Berryman, J. G. and Wang, H. F. The elastic coefficients of double-porosity models for fluid transport in jointed rock. Journal of Geophysical Research Atmospheres, 100, 24611-24627(1995)
[22] Pride, S. R. and Berryman, J. G. Linear dynamics of double-porosity dual-permeability materials:I, governing equations and acoustic attenuation. Physical Review E, 68, 141-158(2003)
[23] Berryman, J. G. and Wang, H. F. Elastic wave propagation and attenuation in a double-porosity dual-permeability medium. International Journal of Rock Mechanics and Mining Sciences, 37, 63-78(2000)
[24] Müler, T. M. and Gurevich, B. A first-order statistical smoothing approximation for the coherent wave field in random porous random media. Journal of the Acoustical Society of America, 117, 1796-1805(2005)
[25] Müler, T. M. and Gurevich, B. Wave-induced fluid flow in random porous media:attenuation and dispersion of elastic waves. Journal of the Acoustical Society of America, 117, 2732-2741(2005)
[26] Müler, T. M. and Gurevich, B. Effective hydraulic conductivity and diffusivity of randomly heterogeneous porous solids with compressible constituents. Applied Physics Letters, 88, 121924(2006)
[27] Carcione, J. M. and Picotti, S. P-wave seismic attenuation by slow-wave diffusion:effects of inhomogeneous rock properties. Geophysics, 71, O1-O8(2006)
[28] Ba, J., Carcione, J. M., and Nie, J. X. Biot-Rayleigh theory of wave propagation in double-porosity media. Journal of Geophysical Research, 116, 309-311(2011)
[29] Ba, J., Carcione, J. M., and Sun, W. Seismic attenuation due to heterogeneities of rock fabric and fluid distribution. Geophysical Journal International, 202, 1843-1847(2015)
[30] Quintal, B., Steeb, H., Frehner, M., and Schmalholz, S. M. Quasi-static finite element modeling of seismic attenuation and dispersion due to wave-induced fluid flow in poroelastic media. Journal of Geophysical Research Atmospheres, 116, 200-216(2011)
[31] Sun, W., Ba, J., Müler, T. M., Carcione, J. M., and Cao, H. Comparison of P-wave attenuation models due to wave-induced flow. Geophysical Prospecting, 63, 378-390(2014)
[32] Eshelby, J. D. The determination of the elastic field of an ellipsoidal inclusion and related problems. Proceedings of the Royal Society of London A:Mathematical Physical & Engineering Sciences, 241, 376-396(1957)
[33] Hashin, Z. The elastic moduli of heterogeneous materials. Journal of Applied Mechanics, 29, 143-150(1962)
[34] Hill, R. Elastic properties of reinforced solids:some theoretical principles. Journal of the Mechanics and Physics of Solids, 11, 357-372(1963)
[35] Brown, W. F. Solid mixture permittivities. Journal of Chemical Physics, 23, 1514-1517(1955)
[36] De Loor, G. P. Dielectric properties of heterogeneous mixtures with a polar constituent. Applied Scientific Research, Section B, 11, 310-320(1964)
[37] Hashin, Z. and Shtrikman, S. A variational approach to the theory of the elastic behaviour of polycrystals. Journal of the Mechanics and Physics of Solids, 10, 343-352(1962)
[38] Hashin, Z. and Shtrikman, S. A variational approach to the theory of the elastic behaviour of multiphase materials. Journal of the Mechanics and Physics of Solids, 11, 127-140(1963)
[39] Budiansk, B. On elastic moduli of some heterogeneous materials. Journal of the Mechanics and Physics of Solids, 13, 223-227(1965)
[40] Hill, R. A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 13, 213-222(1965)
[41] Zimmerman, R. W. Elastic-moduli of a solid with spherical pores:new self-consistent method. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 21, 339-343(1984)
[42] Mori, T. and Tanaka, K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica et Materialia, 21, 571-574(1973)
[43] Voigt, W. Lehrbuch der Kristallphysik, B. G. Teubner, Berlin (1910)
[44] Reuss, A. Berechnung der flie β grenze von mischkristallen auf grund der plastizitäts bedingung f?r einkristalle. Zeitschrift für Angewandte Mathematik und Mechanik, 9, 49-58(1929)
[45] Hill, R. The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society, Section A, 65, 349-354(1952)
[46] Peselnick, L. and Meister, R. Variational method of determining effective moduli of polycrystals:(A) hexagonal symmetry, (B) trigonal symmetry. Journal of Applied Physics, 36, 2879-2884(1965)
[47] Watt, J. P. Hashin-Shtrikman bounds on the effective elastic-moduli of polycrystals with orthorhombic symmetry. Journal of Applied Physics, 50, 6290-6295(1979)
[48] Watt, J. P. and Peselnick, L. Clarification of the Hashin-Shtrikman bounds on the effective elasticmoduli of polycrystals with hexagonal, trigonal, and tetragonal symmetries. Journal of Applied Physics, 51, 1525-1531(1980)
[49] Budiansky, B. and Oconnell, R. J. Elastic-moduli of a cracked solid. International Journal of Solids and Structures, 12, 81-97(1976)
[50] Burridge, R. and Keller, J. B. Poroelasticity equations derived from microstructure. The Journal of the Acoustical Society of America, 70, 1140-1146(1981)
[51] Xu, S. Y. and White, R. E. A new velocity model for clay-sand mixtures. Geophysical Prospecting, 43, 91-118(1995)
[52] Hudson, J. A., Liu, E., and Crampin, S. The mechanical properties of materials with interconnected cracks and pores. Geophysical Journal International, 124, 105-112(1996)
[53] Kuster, G. T. and Toksoz, M. N. Velocity and attenuation of seismic waves in two-phase media, part 1:theoretical formulations. Geophysics, 39, 587-606(1974)
[54] Tang, X. M., Chen, X. L., and Xu, X. K. A cracked porous medium elastic wave theory and its application to interpreting acoustic data from tight formations. Geophysics, 77, D245-D252(2012)
[55] Chapman, M., Zatsepin, S. V., and Crampin, S. Derivation of a microstructural poroelastic model. Geophysical Journal International, 151, 427-451(2002)
[56] Christensen, R. M. Mechanics of Composite Materials, Wiley InterScience, New York (1979)
[57] Hashin, Z. Analysis of composite materials-a survey. Journal of Applied Mechanics, 50, 481-505(1983)
[58] Hashin, Z. The elastic moduli of heterogeneous materials. Journal of Applied Mechanics, 29, 2938-2945(1962)
[59] Vernik, L. and Nur, A. Ultrasonic velocity and anisotropy of hydrocarbon source rocks. Geophysics, 57, 727-735(1992)
[60] Sokolnikoff, I. S. Mathematical Theory of Elasticity, McGraw-Hill, New York (1956)
[61] Love, A. E. H. A Treatise on the Mathematical Theory of Elasticity, Dover Publications, New York (1944)
[62] Yan, F. and Han, D. H. Measurement of elastic properties of kerogen. SEG Technical Program Expanded Abstracts, 143, 2778-2782(2013) |