[1] Najafizadeh, M. M. and Eslami, M. R. First-order-theory-based thermoelastic stability of functionally graded material circular plates. AIAA Journal, 40, 1444-1450(2002)
[2] Ma, L. S. and Wang, T. J. Nonlinear bending and post-buckling of a functionally graded circular plate under mechanical and thermal loadings. International Journal of Solids and Structures, 40, 3311-3330(2003)
[3] Li, S. R., Zhang, J. H., and Zhao, Y. G. Nonlinear thermomechanical post-buckling of circular FGM plate with geometric imperfection. Thin-Walled Structures, 45, 528-536(2007)
[4] Kiani, Y. and Eslami, M. R. Nonlinear thermo-inertial stability of thin circular FGM plates. Journal of the Franklin Institute, 351, 1057-1073(2014)
[5] Aghelinejad, M., Zare, K., Ebrahimi, F., and Rastgoo, A. Nonlinear thermomechanical postbuckling analysis of thin functionally graded annular plates based on von-Karman's plate theory. Mechanics of Advanced Materials & Structures, 18, 319-326(2011)
[6] Ghomshei, M. M. and Abbasi, V. Thermal buckling analysis of annular FGM plate having variable thickness under thermal load of arbitrary distribution by finite element method. Journal of Mechanical Science and Technology, 27, 1031-1039(2013)
[7] Kiani, Y. and Eslami, M. R. Instability of heated circular FGM plates on a partial Winkler-type foundation. Acta Mechanica, 224, 1045-1060(2013)
[8] Kiani, Y. and Eslami, M. R. An exact solution for thermal buckling of annular FGM plates on an elastic medium. Composites Part B:Engineering, 45, 101-110(2013)
[9] Sun, Y. and Li, S. R. Thermal post-buckling of functionally graded material circular plates subjected to transverse point-space constraints. Journal of Thermal Stresses, 37, 1153-1172(2014)
[10] Najafizadeh, M. M. and Hedayati, B. Refined theory for thermoelastic stability of functionally graded circular plates. Journal of Thermal Stresses, 27, 857-880(2004)
[11] Jalali, S. K., Naei, M. H., and Poorsolhjouy, A. Thermal stability analysis of circular functionally graded sandwich plates of variable thickness using pseudo-spectral method. Materials and Design, 31, 4755-4763(2010)
[12] Prakash, T. and Ganapathi, M. Asymmetric flexural vibration and thermoelastic stability of FGM circular plates using finite element method. Composites Part B:Engineering, 37, 642-649(2006)
[13] Kiani, Y. and Eslami, M. R. Thermal postbuckling of imperfect circular functionally graded material plates:examination of voigt, Mori-Tanaka, and self-consistent schemes. Journal of Pressure Vessel Technology, 137, 021201(2015)
[14] Ghiasian, S. E., Kiani, Y., Sadighi, M., and Eslami, M. R. Thermal buckling of shear deformable temperature dependent circular/annular FGM plates. International Journal of Mechanical Sciences, 81, 137-148(2014)
[15] Sepahi, O., Forouzan, M. R., and Malekzadeh, P. Thermal buckling and postbuckling analysis of functionally graded annular plates with temperature-dependent material properties. Materials and Design, 32, 4030-4041(2011)
[16] Najafizadeh, M. M. and Heydari, H. R. Thermal buckling of functionally graded circular plates based on higher order shear deformation plate theory. European Journal of Mechanics-A/Solids, 23, 1085-1100(2004)
[17] Tran, L. V., Thai, C. H., and Nguyen-Xuan, H. An isogeometric finite element formulation for thermal buckling analysis of functionally graded plates. Finite Elements in Analysis and Design, 73, 65-76(2013)
[18] Wang, C. Y. and Wang, C. M. Buckling of circular plates with an internal ring support and elastically restrained edges. Thin-Walled Structures, 39, 821-825(2001)
[19] Laura, P. A. A., Gutiérrez, R. H., Sanzi, H. C., and Elvira, G. Buckling of circular, solid and annular plates with an intermediate circular support. Ocean Engineering, 27, 749-755(2000)
[20] Varma, R. R. and Rao, G. V. Novel formulation to study thermal postbuckling of circular plates with edges elastically restrained against rotation. Journal of Engineering Mechanics, 137, 708-711(2011)
[21] Rao, L. B. and Rao, C. K. Buckling analysis of circular plates with elastically restrained edges and resting on internal elastic ring support. Mechanics Based Design of Structures and Machines, 38, 440-452(2010)
[22] Rao, L. B. and Rao, C. K. Buckling of annular plates with elastically restrained external and internal edges. Mechanics Based Design of Structures and Machines, 41, 222-235(2013)
[23] Rao, L. B. and Rao, C. K. Buckling of circular plate with foundation and elastic edge. International Journal of Mechanics & Materials in Design, 11, 149-156(2014)
[24] Alipour, M. M. A novel economical analytical method for bending and stress analysis of functionally graded sandwich circular plates with general elastic edge conditions, subjected to various loads. Composites Part B:Engineering, 95, 48-63(2016)
[25] Bedroud, M., Nazemnezhad, R., Hosseini-Hashemi, S., and Valixani, M. Buckling of FG circular/annular Mindlin nanoplates with an internal ring support via nonlocal elasticity. Applied Mathematical Modelling, 40, 3185-3210(2015)
[26] Sun, Y., Li, S. R., and Batra, R. C. Thermal buckling and post-buckling of FGM Timoshenko beams on nonlinear elastic foundation. Journal of Thermal Stresses, 39, 11-26(2016)
[27] Li, S. R. and Zhou, Y. H. Nonlinear vibration of heated orthotropic annular plates with immovably hinged edges. Journal of Thermal Stresses, 26, 691-700(2003)
[28] Li, S. R., Su, H. D., and Cheng, C. J. Free vibration of functionally graded material beams with surface-bonded piezoelectric layers in thermal environment. Applied Mathematics and Mechanics (English Edition), 30(9), 969-982(2009) DOI 10.1007/s10483-009-0803-7
[29] Li, S. R. and Batra, R. C. Thermal buckling and post-buckling of Euler-Bernoulli beams supported on nonlinear elastic foundations. AIAA Journal, 45, 711-720(2007)
[30] Li, S. R., Zhang, J. H., and Zhao, Y. G. Thermal post-buckling of functionally graded material Timoshenko beams. Applied Mathematics and Mechanics (English Edition), 27(6), 803-810(2006) DOI 10.1007/s10483-006-0611-y |