[1] RIVLIN, R. S. and ERICKSEN, J. L. Stress deformation relations for isotropic materials. Journal of Rational Mechanics and Analysis, 4, 323-425(1955)
[2] RAJAGOPAL, K. R. On the creeping flow of the second-order fluid. Journal of Non-Newtonian Fluid Mechanics, 15(2), 239-246(1984)
[3] MASSOUDI, M. and PHUOC, T. X. Fully developed flow of a modified second grade fluid with temperature dependent viscosity. Acta Mechanica, 150(1), 23-37(2001)
[4] DONALD-ARIEL, P. On exact solutions of flow problems of a second grade fluid through two parallel porous walls. International Journal of Engineering Science, 40(8), 913-941(2002)
[5] EMIN-ERDO?AN, M. and ERDEM-IMRAK, C. On some unsteady flows of a non-Newtonian fluid. Applied Mathematical Modelling, 31(2), 170-180(2007)
[6] HAYAT, T., IQBAL, Z., and MUSTAFA, M. Flow of a second grade fluid over a stretching surface with Newtonian heating. Journal of Mechanics, 28(1), 209-216(2012)
[7] SHRESTHA, G. M. Singular perturbation problems of laminar flow in a uniformly porous channel in the presence of a transverse magnetic field. The Quarterly Journal of Mechanics and Applied Mathematics, 20(2), 233-246(1967)
[8] RAFTARI, B., PARVANEH, F., and VAJRAVELU, K. Homotopy analysis of the magneto hydrodynamic flow and heat transfer of a second grade fluid in a porous channel. Energy, 59, 625-632(2013)
[9] RAMZAN, M. and BILAL, M. Time dependent MHD nano-second grade fluid flow induced by permeable vertical sheet with mixed convection and thermal radiation. PLoS One, 10(5), e0124929(2015)
[10] LABROPULU, F., XU, X., and CHINICHIAN, M. Unsteady stagnation point flow of a nonNewtonian second-grade fluid. International Journal of Mathematics and Mathematical Sciences, 60, 3797-3807(2003)
[11] HAYAT, T., KHAN, M. W. A., ALSAEDI, A., and KHAN, M. I. Squeezing flow of second grade liquid subject to non-Fourier heat flux and heat generation/absorption. Colloid and Polymer Science, 295(6), 967-975(2017)
[12] CHENG, C. Y. Fully developed natural convection heat and mass transfer of a micropolar fluid in a vertical channel with asymmetric wall temperatures and concentrations. International Communications in Heat and Mass Transfer, 33(5), 627-635(2006)
[13] ABDULAZIZ, O. and HASHIM, I. Fully developed free convection heat and mass transfer of a micropolar fluid between porous vertical plates. Numerical Heat Transfer, 55(3), 270-288(2009)
[14] CHAMKHA, A. J., MOHAMED, R. A., and AHMED, S. E. Unsteady MHD natural convection from a heated vertical porous plate in a micropolar fluid with Joule heating, chemical reaction and radiation effects. Meccanica, 46(2), 399-411(2011)
[15] SINGH, A. K. and GORLA, R. S. R. Free convection heat and mass transfer with Hall current, Joule heating and thermal diffusion. Heat and Mass Transfer, 45(11), 1341-1349(2009)
[16] HAYAT, T., MUHAMMAD, T., ALSAEDI, A., and ALHUTHALI, M. S. Magneto hydrodynamic three-dimensional flow of viscoelastic nanofluid in the presence of nonlinear thermal radiation. Journal of Magnetism and Magnetic Materials, 385, 222-229(2015)
[17] HAYAT, T., WAQAS, M., SHEHZAD, S. A., and ALSAEDI, A. Chemically reactive flow of third grade fluid by an exponentially convected stretching sheet. Journal of Molecular Liquids, 223, 853-860(2016)
[18] AHMED, N., KHAN, U., and MOHYUD-DIN, S. T. Influence of nonlinear thermal radiation on the viscous flow through a deformable asymmetric porous channel:a numerical study. Journal of Molecular Liquids, 225, 167-173(2017)
[19] SUDARSANA-REDDY, P., CHAMKHA, A. J., and AL-MUDHAF, A. MHD heat and mass transfer flow of a nanofluid over an inclined vertical porous plate with radiation and heat generation/absorption. Advanced Powder Technology, 28(3), 1008-1017(2017)
[20] DOGONCHI, A. S., ALIZADEH, M., and GANJI, D. D. Investigation of MHD Go-water nanofluid flow and heat transfer in a porous channel in the presence of thermal radiation effect. Advanced Powder Technology, 28(7), 1815-1825(2017)
[21] EEGUNJOBI, A. S., MAKINDE, O. D., and JANGILI, S. Unsteady MHD chemically reacting and radiating mixed convection slip flow past a stretching surface in a porous medium. Defect and Diffusion Forum, 377, 200-210(2017)
[22] BHATTI, M. M., ABBAS, M. A., and RASHIDI, M. M. A robust numerical method for solving stagnation point flow over a permeable shrinking sheet under the influence of MHD. Applied Mathematics and Computation, 316, 381-389(2018)
[23] ZHU, J., ZHENG, L., ZHENG, L., and ZHANG, X. Second-order slip MHD flow and heat transfer of nanofluids with thermal radiation and chemical reaction. Applied Mathematics and Mechanics (English Edition), 36(9), 1131-1146(2015) https://doi.org/10.1007/s10483-015-1977-6
[24] ABOLBASHARI, M. H., FREIDOONIMEHR, N., NAZARI, F., and RASHIDI, M. M. Entropy analysis for an unsteady MHD flow past a stretching permeable surface in nano-fluid. Powder Technology, 267, 256-267(2014)
[25] RASHIDI, M. M., MAHMUD, S., FREIDOONIMEHR, N., and ROSTAMI, B. Analysis of entropy generation in an MHD flow over a rotating porous disk with variable physical properties. International Journal of Exergy, 16(4), 481-503(2015)
[26] MAHMOODI, M. and KANDELOUSI, S. Effects of thermophoresis and Brownian motion on nanofluid heat transfer and entropy generation. Journal of Molecular Liquids, 211, 15-24(2015)
[27] SRINIVAS, J., RAMANA-MURTHY, J. V., and ANWAR-BÉG, O. Entropy generation analysis of radiative heat transfer effects on channel flow of two immiscible couple stress fluids. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 9(6), 2191-2202(2017)
[28] MAKINDE, O. D. Entropy analysis for MHD boundary layer flow and heat transfer over a flat plate with a convective surface boundary condition. International Journal of Exergy, 10(2), 142-154(2012)
[29] NOGHREHABADI, A., SAFFARIAN, M., POURRAJAB, R., and GHALAMBAZ, M. Entropy analysis for nanofluid flows over a stretching sheet in the presence of heat generation/absorption and partial slip. Journal of Mechanical Science and Technology, 27(3), 927-937(2013)
[30] SHIT, G. C., HALDAR, R., and MANDAL, S. Entropy generation on MHD flow and convective heat transfer in a porous medium of exponentially stretching surface saturated by nanofluids. Advanced Powder Technology, 28(6), 1519-1530(2017)
[31] ABOLBASHARI, M. H., FREIDOONIMEHR, N., NAZARI, F., and RASHIDI, M. M. Analytical modeling of entropy generation for Casson nano-fluid flow induced by a stretching surface. Advanced Powder Technology, 26(2), 542-552(2015)
[32] JBARA, A., SLIMI, K., and MHIMID, A. Entropy generation for unsteady natural convection and thermal radiation inside a porous enclosure. International Journal of Exergy, 12(4), 522-551(2013)
[33] DAS, S., CHAKRABORTY, S., JANA, R. N., and MAKINDE, O. D. Entropy analysis of unsteady magneto-nanofluid flow past accelerating stretching sheet with convective boundary condition. Applied Mathematics and Mechanics (English Edition), 36(12), 1593-1610(2015) https://doi.org/10.1007/s10483-015-2003-6
[34] BHATTI, M. M., ABBAS, T., RASHIDI, M. M., and ALI, M. E. S. Numerical simulation of entropy generation with thermal radiation on MHD Carreau nanofluid towards a shrinking sheet. Entropy, 18(6), 200(2016)
[35] BHATTI, M. M., ABBAS, T., RASHIDI, M. M., ALI, M. E. S., and YANG, Z. Entropy generation on MHD Eyring-Powell nanofluid through a permeable stretching surface. Entropy, 18(6), 224(2016)
[36] BHATTI, M. M. and RASHIDI, M. M. Numerical simulation of entropy generation on MHD nanofluid towards a stagnation point flow over a stretching surface. International Journal of Applied and Computational Mathematics, 3(3), 2275-2289(2017)
[37] ABBAS, M. A., BAI, Y., RASHIDI, M. M., and BHATTI, M. M. Analysis of entropy generation in the flow of peristaltic nanofluids in channels with compliant walls. Entropy, 18(3), 90(2016)
[38] BHATTI, M. M., ABBAS, T., and RASHIDI, M. M. Entropy generation as a practical tool of optimisation for non-Newtonian nanofluid flow through a permeable stretching surface using SLM. Journal of Computational Design and Engineering, 4(1), 21-28(2017)
[39] BHATTI, M. M., RASHIDI, M. M., and POP, I. Entropy generation with nonlinear heat and mass transfer on MHD boundary layer over a moving surface using SLM. Nonlinear Engineering, 6(1), 43-52(2017)
[40] BHATTI, M. M., SHEIKHOLESLAMI, M., and ZEESHAN, A. Entropy analysis on electrokinetically modulated peristaltic propulsion of magnetized nanofluid flow through a microchannel. Entropy, 19(9), 481(2017)
[41] AFRIDI, M. I., QASIM, M., and MAKINDE, O. D. Second law analysis of boundary layer flow with variable fluid properties. Journal of Heat Transfer, 39(10), 104505(2017)
[42] EEGUNJOBI, A. S. and MAKINDE, O. D. Irreversibility analysis of hydromagnetic flow of couple stress fluid with radiative heat in a channel filled with a porous medium. Results in Physics, 7, 459-469(2017)
[43] DAS, S., JANA, R. N., and MAKINDE, O. D. MHD flow of Cu-Al2O3/water hybrid nanofluid in porous channel:analysis of entropy generation. Defect and Diffusion Forum, 377, 42-61(2017)
[44] EEGUNJOBI, A. S. and MAKINDE, O. D. MHD mixed convection slip flow of radiating Casson fluid with entropy generation in a channel filled with porous media. Defect and Diffusion Forum, 374, 47-66(2017)
[45] ALAM, M., KHAN, M., HAKIM, A., and MAKINDE, O. D. Magneto-nanofluid dynamics in convergent-divergent channel and its inherent irreversibility. Defect and Diffusion Forum, 377, 95-110(2017)
[46] EEGUNJOBI, A. S. and MAKINDE, O. D. Inherent irreversibility in a variable viscosity Hartmann flow through a rotating permeable channel with Hall effects. Defect and Diffusion Forum, 377, 180-188(2017)
[47] CHOI, S. U. S. and ESTMAN, J. A. Enhancing thermal conductivity of fluids with nanoparticles. ASME International Mechanical Engineering Congress and Exposition, 231, 99-106(1995)
[48] BUONGIORNO, J. Convective transport in nanofluids. Journal of Heat Transfer, 128(3), 240-250(2006)
[49] SHEIKHOLESLAMI, M., RASHIDI, M. M., AL-SAAD, D. M., FIROUZI, F., ROKNI, H. B., and DOMAIRRY, G. Steady nanofluid flow between parallel plates considering thermophoresis and Brownian effects. Journal of King Saud University-Science, 28(4), 380-389(2016)
[50] HAYAT, T., MUHAMMAD, T., QAYYUM, A., ALSAEDI, A., and MUSTAFA, M. On squeezing flow of nanofluid in the presence of magnetic field effects. Journal of Molecular Liquids, 213, 179-185(2016)
[51] RAMANA-REDDY, J. V., SUGUNAMMA, V., and SANDEEP, N. Thermophoresis and Brownian motion effects on unsteady MHD nano fluid flow over a slendering stretching surface with slip effects. Alexandria Engineering Journal, 57, 2465-2473(2017)
[52] GUHA, A. and SAMANTA, S. Effect of thermophoresis on the motion of aerosol particles in natural convective flow on horizontal plates. International Journal of Heat and Mass Transfer, 68, 42-50(2014)
[53] AWAD, F. G., AHAMED, S. M. S., SIBANDA, P., and KHUMALO, M. The effect of thermophoresis on unsteady Oldroyd-B nanofluid flow over stretching surface. PLoS One, 10(8), e0135914(2015)
[54] QAYYUM, S., HAYAT, T., ALSAEDI, A., and AHMAD, B. Magnetohydrodynamic (MHD) nonlinear convective flow of Jeffrey nanofluid over a nonlinear stretching surface with variable thickness and chemical reaction. International Journal of Mechanical Sciences, 134, 306-314(2017)
[55] KIUSALAAS, J. Numerical Methods in Engineering with MATLAB, Cambridge University Press, New York (2005) |